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A general solution is given for the problem of the field produced by a given distri
bution of external currents in an infinite homogeneous medium possessing arbitrary 
anisotropy (including gyrotropic behavior). In the particular case of a magnetoactive 
medium described by a tensor of the form (3.1), the multipole expansion of the radia
tion field has been obtained. In conclusion, the radiation field of a dipole in a 
magnetoactive medium is considered in greater detail. 

1. INTRODUCTION 

THE classical e le ctrodynamical problem of the 
radiation of a given distribution of external 

currents in a homogeneous anisotropic medium* 
has not, so far as is known to us, received a 
general solution up to the present time. In papers 
by Ginsburg 1 and Kolomenskii 2 the special case 
is considered of the radiation of a point charge 
moving in a transparent anisotropic medium (Ref. 
1 deals with the case of an inactive crystal, and 
Ref. 2 with that of a gyrotropic crystal). These 
writers, moreover, employ Hamilton's method, ex
panding the field inside a ''box" in spatial 
Fourier series of the harmonic functions exp(ik,\r). 
The time-dependent coefficients of the series 
are determined in the general case by a system of 
inhomogeneous linear differential equations. In 
the particular case of a monochromatic radiation 
field, which is the only one in which we shall 
hereafter be interested, the system of differential 
equations reduces to a system of linear algebraic 
equations, and the problem becomes considerably 
easier. In principle it can then be solved for a 
medium with arbitrary anisotropy and an arbitrary 
distribution of sources of the field. But with 
such a general statement of the problem it is more 
convenient to use a different approach not in
volving resolution of the field in terms of spatial 
harmonics exp(ik,\r), which are in reality not in 
any way singled out in the problem in question. 

Namely, we at once seek an expression for the 
field produced by the given distribution of external 
currents j in the unbounded homogeneous medium 
with arbitrary anisotropy in a form that corresponds 
in the case of an isotropic medium to the well-

known expression of the field in terms of retarded 

* Under the name of anisotropic medium we include 
both optically inactive and also active (gyrotropic) 
crystals. 

potentials, for example, the Hertz vector 

IT = iL ~ je-ikv; P dV I p. 
v 

The general expression so obtained, including 
also quasistationary fields, indeed turns out to 
be somewhat complicated, but for radiation prob
lems one is interested only in the asymptotic 
representation of the indicated expression for the 
field, corresponding to the wave zone of the 
sources. The method we use for the solution of 
this last problem has been illustrated in this 
paper in the special case of an anisotropic medium
an ionized gas in a constant magnetic field (mag
netoactive medium). 

2. GENERAL EXPRESSION FOR THE FIELD 

IN AN INFINITE HOMOGENEOUS ARBITRARILY 

ANISOTROPIC MEDIUM WITH SOURCES 

We start with the field equations for an aniso
tropic medium with a given distribution of external 
currents (the medium is assumed nonmagnetic): 

curiE=- ikH, rotH= ik~E + 4rc 1• (2.1) 
c ex 

where ('is the dielectric permeability tensor (in 
the general case complex)* and J. is the external 

ex 
current density, assumed to be a continuous function 
of position. It is required to find the solution of 
the equations (2.1) satisfying the condition of 
finiteness at all points of space and the radiation 
condition. This latter condition means, as for the 
isotropic case, that the field from a confined 
source must consist at infinity of diverging waves. 

It is expedient to start from the equations for 
the field vectors (for example, for E) without at 

* The quantity (E represents a vector with the com
ponents fikE k (summation over repeated indices is 
assumed). 
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once going over to auxiliary potentials. Eliminat
ing the vector H from Eq. (2.1), we find for E the 
equation 

curl curl E- k2zE (2.2) 

=grad divE- V2E- k2 ~E = ~~J· 
LC ' 

where the second form of the left-hand member has 
meaning only in a rectangular system of coordi
nates, which we shall use for the time being. For 
simplicity in writing, the subscript "ex" has been 
dropped. 

Exploiting the linearity of the field equations, 
we shall seek the solution of Eq. (2.2) in the 
form 

Ei= 4~k~ Tnt(r,ri)jk(r1 )dV1 , 
(2.3) 

v 

where T ik (r, r 1) is a tensor of the second rank de
pending on the coordinates of the point of observa
tion and the source point (rand r 1) and the inte
gration is taken over the entire volume of the 
sources. In the isotropic case, with E ik = d) ik , 

where 8 ik is the unit tensor, we have 

(2.4) 

where p = r- r 1 and q2 = k 2E. From the point of 

view of the theory of linear differential equations 
Tik(r, r 1) is the Green's tensor for the equations 
(2.2). 

Substituting Eq. (2.3) into Eq. (2.2), we obtain 
the following equation for T ik: 

Dia. T a.k = oik o (p), 

(2.5) 

Dik = iJ2 2 ~ 
axi axk - V 0 ik - rxik. 

Here a.ik =k 2Eik and \/ 2 is the Laplacian operator. 
It can he verified without difficulty that for E. k 

= Ei>ik the tensor (2.4) indeed satisfies the equa
tions (2.5). 

In analogy with the case of the isotropic medium 
[Eq. (2.4)], we shall seek the solution of Eq. (2.5) 
in the form 

(2.6) 

where D 'ocfs is also some tensor differential opera
tor and I 0 IS a scalar function of the coordinates 

of the points rand r 1• In order for Eq. (2.6) to he 
a solution of Eq. (2.5), it is necessary and suffi
cient that the following relations hold 

D 0 10 =o(p). (2.7) 

Such a separation of the problem (into an algebraic 
and an analytical part) decidedly simplifies its 
·solution. 

The first of the equations (2.7) indicates that the 
operator D 0 is equal to the determinant of the 
tensor D ik and the tensor D 'ik is the algebraic 
complement of the tensor D ki" Using the invariant 
representation of algebraic complements and deter
minants (cf. for example Ref. 3) we obtain: 

D;k = 1}2ekrx[3eimnDa.m Dr>n, (2.8) 

(2.9) 

where e iik is the completely antisymmetric unit 
pseudotensor of the third rank (e 123 = 1). Substi
tuting E:q •. <2.9) into Eq. (2. 7), we obtain an equation 
for I 0 , whtch determines this,quantity apart from 
a nonsingular contribution I 0 which satisfies the 
equation D / '-= 0. The lack of uniqueness of 
the function f0 is obviously entirely analogous to 
that of the Green's function. As for the Green's 
function, the nonsingular term I 0 'is determined by 
the supplementary conditions (in our case, the radia
tion condition). 

Accm·ding to Eqs. (2.5) and (2.9) 

D 01 exp {+ipp} = ~ (p) exp { +ipp}, (2.10) 

where ~.(p) is the determinant of the matrix 
p 2 oik -Pi Pk- rxik. Consequently, we shall 

satisfy the second of the equations (2. 7) if we set: 

CD 

1 ( exp{±ipp} 
/ 0 (r, r1 ) = (21t)3 ) A (p) dp. (2.11) 

-CD 

The validity of the expression (2.11) for I 0 from 
the point of view of the radiation condition (i.e., 
the legitimacy of setting I '0 = 0) is confirmed by 
the asymptotic behavior of the integral (2.11) at 
infinity .. We shall not carry out the analysis of 
this integral for the general anisotropic case. In 
the following Section the investigation is carried 
through for several special cases, and shows that 
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the radiation condition is satisfied. 
Thus all of the quantities of interest have been 

found, and for T ik we have finally 

Tik (r, r1) = 1j 2 ekar>eimnVamDrJnl 0 (r,ri), (2.12) 

with I 0(r, r 1) given by the expression (2.11). 
The solution (2.3) can be given a different and 

more familiar form. We introduce the vector 

n = ~~~ ~ / 0 (r, r1 ) j(r1) dV1 • (2.13) 
v 

Then from Eqs. (2.3) and (2.12) we obtain: 

(2.14) 

Thus we can regard the vector ll as the Hertz vec
tor. But in this connection it must be kept in 
mind that the definition of TI by Eq. (2.13) will 
not reduce on passage to the isotropic case to the 
well-known definition of the Hertz vector for an 
isotropic medium, since the expression (2.11) does 
not*go over into e-iqP/p. 

The set of formulas (2.11), (2.13) and (2.14) 
[or (2.3), (2.ll) and (2.12)] completely solves the 
problem proposed. The difficulty encountered in 
the practical application of these formulas is that 

of calculating the integral (2.11). But for the de
termination of the field in the wave zone (kp >> 1) 
it is necessary to know only the asymptotic value 
of this integral with accuracy to terms of the 
order 1/kp. For this purpose it is clear that in all 
concrete cases the method of steepest descent can 
be successfully applied. In the following Section 
we carry out such a calculation for one special 
case of an anisotropic medium. 

3. THE WAVE FIELD OF AN ARBITRARY DISTRIBU
TION OF CURRENTS IN A MAGNETOACTIVE MEDIUM 

We shall apply the results obtained above to 
the special case of a magnetoactive medium such 
as an ionized gas in a constant magnetic field. 
If the axis of symmetry (i.e., the magnetic field) 
is directed along the z axis of the coordinates, 
then the tensor fik has the form (c£., for example, 
Ref. 4, p. 326): 

8 -ig 0 

Z;k = ig 8 0 
0 0 "fJ 

(3.1) 

* Apart from a c~tant factor, the quantity ('V 2 + l> I 0 
goes over into e-tqp /pin the case of an isotropic 
medium. 

In the absence of absorption £, 7'J and g are real; 
when there is absorption, these quantities are, 
generally speaking, complex. The explicit ex
pressions for the components of f ik in terms of 
the parameters of the plasma are of no interest to 
us here. We note that if we formally set g = 0 we 
obtain the case of a uniaxial crystal with the axis 
of symmetry along the z axis*. This circumstance 
can be used later on to obtain various results for 
a uniaxial crystal. 

Our problem is to calculate the asymptotic ex
pression (for kp .... oo) for the integral (2.11) in 
the case of a medium described by a tensor of 
the form (3.1). The determinant Mp) is biquadra-

tic in p 3 and can be written in the form (cf., for 
example, Ref. 5, p. 134): 

~ (P) = IX3 (p~- s;) (p~ _ t~), (3.2) 

where a. 3 =k 27'J, and s 3(pl' p 2) and t 3(p 1, p 2) are 

the z components of the wave vectors sand t 
corresponding to the ordinary and extraordinary 
plane waves, expressed in terms of the other two 
components p 1 and p 2 • The components s 3 and t 3 
are determined as the roots of the equation 

(zi=s;, Z2=t;): 

(3.3) 

<XI = k28, ~ = k2g, p2 = p~ +Pi· 
Substituting Eq. (3.2) into Eq. (2.11), we obtain: 

(3.4) 

1 \ exp { ± ipp} dp1dp2dp3 

J (p; - s~) (p;- t~) -co 

This can easily be reduced to a one-dimensional 
integral. In fact, let us first consider the region 
z > 0 and take the minus sign in the exponent of 
the expression (3.4). Supposing further that, in 
the extraction of roots, s 3 and t 3 are defined by 

* For an absorbing crystal it is here necessary to pos
tulate that the principal axes of the dielectric permea
bility tensor and of the conductivity tensor coincide 
i.e., to require a sufficiently high degree of symmet;y 
of the crystal. 
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those branches for which lm(s 3, t 3) < 0, we per
form the integration over p 3 , taking the residues 
at the poles p 3 = s 3, t 3 • It we go over to polar 

Here H (2) (z} is the Hankel function of second 
0 

kind and zeroth order. 
This expression for I 0 is valid for arbitrary 

values of the parameters £, 7] and g. But in what 
follows, for simplicity of exposition, we confine 
ourselves to the case of no absorption, i.e., the 
case of real E, 7] and g. 

We apply the method of steepest descents to 
the integral (3.5). We first transform to a new 
variable of integration ~ = e + i ~,by means of 
the equation kn .(t) sin~= p, where n .(~) is the 

' ' index of refraction of the ith plane wave (i = 1 
for ordinary, i = 2 for extra-ordinary) with its 
normal making angle ~with the z axis. In the 
first term of Eq. (3.5) one must put i = 1, and in 

coordi111ates p, !J, cp for the result obtained and 
introduce p 1 = p cos 7], p 2 = p sin ry, then, after 
integration over 7], we obtain 

(3.5) 

the second i = 2. The possibility of complex 
values of the angle ~means that our considera

tion includes so-called inhomogeneous plane waves. 
From the definition of the index of refraction it 

follows that 

From this we obtain 

(3.7) 

Substitution of Eq. (3.6) into Eq. (3.3) gives an 
equation for ni' with roots of the form 

n~. 2 = [e: (e: -"IJ)- g2) sin2 ~ + 2e:7J ± Jl"[e: ("IJ- s) + g2)2 sin4 ~ + 4"1J2g2 cos2~ 
2 (e: sin2 ~ + 7J cos2 ~) 

(3.8) 

Noting further that 

s~- t; (3.9) 

The integration contours C. lie in the complex 
~-plane. ' 

In all of what follows we shall carry out the 
investigation only for one type of wave, dropping 
the index i. Omitting from consideration for the 
time being the region of angles around !'J = 0, we 
employ the asymptotic representation of the func
tion H0 { 2)(z). With the intent of carrying out all 
calculations to the accuracy of terms of order 
1/kp, we can keep only the first term in the asymp
totic representation of H 0 ( 2 ) (z ). Substitution of 
this into Eq. (3.10) and introduction of the polar 
angles 0 and X of the vectors rand r 1 (Fig. l) 
gives the following expression for I 0 : 

/ 0 (r,r1) (3.11) 

= iei"/4 ~/ 2 \ F'(l: r ) e-ikrn cos (~-e)d~ 
8rr:k3 rr:kp sin & J L. ·' 1 ' c 

we obtain for I 0 the following expression 

(3.10) 

(3.12) 

(n' sin~+ n cos~) exp {ikr 1n cos(~- x)} 

X cos~ [ (e: -7))2 n4 sln4 ~- 47Jg2 (n2 sin2 ~- "IJ)J'I• 

From the condition kp >> 1 it necessarily follows 
that kr >> 1 and kr 1 );' l. Thus the integral (3.11) 
satisfies the requirements for applicability of the 
method of steepest descents 6 • The saddle point 
~0(0) is determined by the equation 

(d I d~)[n (~)cos(~- 6)] = 0, 

from which we have 

(3.13) 
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But n' (~0} In (~0} = tg oc (~0), where a. ( t"0 ) is the 
angle between the wave normal and the energy
flux vector of the plane wave, under the condition 
that the angle between the normal and the z axis 
is equal to t"0 (cf., for example, Ref. 4, p. 463). 
Thus 4 a.(t"0)-= t"0(())- e, i.e., t"0 (()) is that angle 
between the wave normal of the plane wave and 
the direction of the magnetic field for which the 
energy-flux vector of this wave makes the angle () 
with the magnetic field. From this it is clear 
that the angle t"0 (()) is always real. 

The integration path of steepest descent is de
termined by the equation 

n (~)cos(~- 6) = ~ (0)- i:z, 

ljJ (6) = n (~0) cos oc (~0), 
(3.14) 

Substitution of Eq. (3.15) into Eq. (2.11) gives 
the expression for the wave field: 

n = 47tk2 A (6) e-iknli(S) z (0) I kr' 

z (0) = )_ \ j (r1) eikr,n(;,)cosy dV1 • 
l()) .) 

v 

FIG. l 

(3.17) 

(3.18) 

4. EXPANSION OF THE WAVE FIElD IN TERMS OF 
MULTIPOLES 

Expansion of the function Z(()) into a series 

where (is a real variable ranging from -oo to -t-oo. 
Integrating over the path of steepest descent and 
taking the function F (~. r 1 ) d~l d~ fort"= t"0 
out from under the sign of integration, we obtain 
an asymptotic expression for / 0(r, r 1) valid to 
terms of order 1/kp: 

Io (r, rl) =A (0) eikr,n(~,)cosy e-ikr<j;(6) I kr. (3.15) 

Here y-= [x- t"0(8)] is the angle between r 1 and 
the wave normal N of the plane wave that has its 
energy-flux vector directed at the angle ()(see 
Fig. 1), and the function A(()) has the form 
[ (n0 = n (~0 ), oc0 = oc (~0) ]: 

(3.16) 

in powers of a/A. (a is the order of magnitude of the 
linear dimensions of the system of currents and A. 
is the wavelength) must give the expansion of the 
wave field (3.17) in terms of multipoles: 

(4.1) 

co 

= 4TCk2 A (0) (krrl e-ikr<J;(a) ~ Zs (0). 
S=O 

The expression for the multipole of sth order is 
found by expanding the function exp {ikr 1n(t"0 ) 

x cosy} in a series of powers of kr 1• Thus we 
obtain: 

In the case of an isotropic medium, the zeroth 
term of the expansion (s = O) corresponds, as is 
well known 7 , to dipole radiation, while the follow
ing approximation (s = l) corresponds to magnetic 
dipole and electric quadrupole radiations. The 
same holds true, naturally, also in the case now 
considered. In fact, introducing the electric and 
magnetic dipole moments 

p = _!__ \ J·dv 
!()) .) 1o 

v 
m = 2~ ~ fr1jJ dV1 , 

v 

(4.3) 
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and the tens<r 7T of the electric quadrupole moment of 
the given current distribution 

- 1 \ (" 0 0 "in= 2C) ~iln + ~nli) dV1 (4.4) 
v 

(~i are the coordinates of the point r 1), we find*: 

Zo = p, zl (fl) = n (Eo) ([mN] + ,;N). (4.5) 

N = N(O) is as before the unit vector of the wave 
normal (Fig. 1). The difference between the re
sult (4.5) and the corresponding result in the case 
of an isotropic medium consists only in the fact 
that the unit vector of the direction of observation, 
grad r, (isotropic medium) is replaced by the 
vector N making the angle cx.(~0) with grad r. 

5. THE WAVE FIELD OF AN ELECTRIC DIPOLE 

We introduce the explicit exJression for the field 
of a dipole p. To do this, we must substitute 

(5.1) 

into Eq. (2.14) and carry out the indicated opera
tions to the accuracy of terms of the order 1/kr. 

Working out the operator (2.8) in Cartesian 
coordinates for the present case of a magneto

active medium, we obtain for the CO~q)Onents of 
the electric field the following expressions: 

(5.2) 

where we have introduced the notations 

2 2 a11 =(a+ cos2 <p- e) j 3 + (e- 'Yl) a_, (5.3) 

a 22 =(a~ sin2 :p- e) j 3 + (e- 'Yl) a:_, 

* Corresponding calculations can be found in Ref. 
7, p. 382. 

(5.4) 

From the relations that have been obtained it 
is seen that this result is correct for arbitrary 
angles 0, and thus the assumptions made above 
(z > 0, angle 0 not too close to zero) are not 
essential. As regards the first assumption (z > 0), 
this follows from the fact that the right-hand side 
of Eq. 1(5.2) is a function of 0 symmetric with re
spect to () = 'fT/2. The validity of the expression 
(5.2) at 0 == 0 follows from the continuity (absence 
of singularity) of the right-hand member of Eq. 
(5.2) at this point. 

Let us examine the surfaces of constant phase 

'Y (r, fJ) = krr!t (B) = krn (E0) cos oc (E0) = const 

(Fig. 2). Calculation of \7'1' gives 

(Vlf")2 = k2n2 (Eo), 

A 

cos (N ,p) = (V'Y)r / kn (~0) =cos oc (~0)o 

(5.5) 

(5.6) 

Equation (5.5) is, obviously, the special form of 
the eikonal equation corresponding to the case of 
a homogeneous medium with axially symmetrical 
anisotropy. 

Equation (5.6) shows that the angle between the 
normal N to the front of the wave produced by a 

N, 

FIG. 2 

1- '¥1 (p, 6) = const, 
2- '!'"2 (p, 6) = const 

point source and the direction of observation r (the 
angle 0) is always equal to the angle between the 
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wave-normal and the energy-flux vector of the 
plane wave propagated in the direction ~0(8) 
(Fig. 2). This result is seen to be quite natural 
if we take into account the fact that in the wave 
zone the field of an arbitrary distribution of 
sources can always be represented in a sufficiently 
small region of space as the field of a plane wave. 

It is of interest to consider the radiation of a 
dipole for several special cases of the orientation 
of the dipole itself and of the choice of the direc
tion of observation. Without presenting the corre· 
sponding calculations from Eq$. (5.2), (5.3) and 
(5.4), we give only the final results. 

1. Dipole orientated along the magnetic field 

((J = 0). Just as in the case of an isotropic-medium, 
the dipole does not radiate along its own axis. In 
a direction perpendicular to the axis of the dipole 
there is emitted only the ordinary linearly polar
ized wave, with the amplitude 

..!!:._ lfl e:(l)-e:)+g21 (5.7) 
r p r 1) (1)- e:) • 

2. Dipole orientated perpendicular to the field 

(p 1 = p, P 2 = p 3 = 0). Along its own axis the di
pole emits the extraordinary wave elliptically 
polarized in the plane (x, r) perpendicular to the 
magnetic field. The amplitudes along the X and r 
axes are, respectively, 

{ g2j 82 (5.8) 
g fe 

Radiation along the axis of the dipole is charac
teristic of a magnetoactive medium. When we go 
over to the uniaxial crystal (g = 0), or even further 

to the isotropic medium (g = 0, c = 77), the ampli
tudes (5.8) go to zero. Along the magnetic field 
both waves are emitted, and now with circular 
polarizations. The amplitudes of the waves are 

(the upper sign refers to the ordinary wave). 
In conclusion the writer takes occasion to ex

press his deep gratitude to Prof. S. M. Rytov for 
directing and aiding in the work, and also to M. L. 
Levin for several remarks. 
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