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fissions from the galvanometer scale, ,\is the 
disintegration constant, N is the number of particles 
bombarding the target during irradiation, f is the 
geometric fac:tor, t 1 is the irradiation time of the 
target by the beam, t 2 is the time of onset of 
charge accumulation in the collecting electrode, 
and t 3 is the time of the cessation of accumula
tion .. Before the yield was measured, the disinte
gration constant ,\was determined, and the decay 
period of N 13 was computed which, according to 
our data, proved t? be 10.02 ± 0.1 min, in agree
ment with the findings of other authors. 

Figures 3 and 4 show the yield curves for 
reactions (l) and (2). The ordinate indicates the 
yield, i.e., the number of positrons per particle 
bombarding the target, and the abscissa the energy 
of the bombarding particles in kilo-electron-volts. 

From the yield curves one can determine the 
cross section by the familiar equation 

cr == (dy I dE) (dE I dx) In 
'' ' 

where dE/dx is the loss of energy by the bombard
ing particles in the target, y is the reaction yield 
and n is the number of nuclei per 1 cm 3 • The 
quantities dy and dE are determined from the yield 
curve. Specific energy losses by the bombarding 

particles in the target are computed from the 
familiar Bethe formula. 

Figure 5 shows the C 12(p, y) cross section 

curve. The value of the C 12(p, y) effective cross 
section is 0.30 x 10- 30 cm 2 for an energy of 313 
kev and grows to 6.4 x 10- 30 cm 2 at 358 kev. The 
value of the C 12(d, n) effe.ctive cross section is 
0.8 x 10- 28 cm2 for an energy of 340 kev. The 
absolute errors in the determined cross sections 
do not exceed ±10%. 

1 W. A. Fowler and C. C. Lauritsen, Phys. Rev. 76, 
314 (1949). 

2 D. M. Van Patter, Phys. Rev. 76, 1264 (1949). 
3 W. F. Hornyak and T. Lauritsen, Phys. Rev. 77, 160 

(1950). 
4 A.M. Feingold, Rev. Mod. Phys. 23, 10 (1951). 
5 H. A. Bethe, Phys. Rev. 55, 103, 434 (1939). 
6 R.N. Hall and W. A. Fowler, Phys. Rev. 77, 197 

(1950). 
7 L. R. Halfstad and M.A. Tuve, Phys. Rev. 48, 306 

(1935). 
8 R. B. Roberts and N. P. Heydenburg, Phys. Rev. 

53, 374 (I 938). 
9 Bennet, Bonner, Hudspeth, Richards and Watt, Phys. 

Rev. 59,781 (1941). 

Translated by A. Skumanich 
56 

SOVIET PHYSICS JETP VOLUME 5, NUMBER 2 SEPTEMBER, 1957 

Equilibrium Spectrum of Electrons and Photons 
with Account of Scattering 

I. P. IVANENKO 
Moscow State University 

(Submitted to JETP editor December 2, 1955) 
J. Exptl. Theoret, Phys. (U.S.S.R.) 32, 333-337 (February, 1957) 

An exact solution of the equation for the equilibrium spectrum of electrons and photons 
has been found with account of scattering, i.e., an expression is obtained fa the angular 
and energetic distributions of particle·s at the shower maximum in heavy elements. 

A N analytical expression for the "equilibrium" 
spectrum (integrated over the depth t *) of 

photons and electrons, which is valid for any de
pendence of the absorption coefficient of the pho
tons a (E) on the energy, was first obtained in the 
work of Tamm and Belen'kii.l An analytical ex
pression for the "equilibrium" spectrum, with ac
count of the Rutherford scattering of the charged 
particles, was found by Belen'kii and Maksimov. 2 

However, the equations in Ref. 2 for the equilibrium 

* The depth t is measured in atomic units, 

spectrum with account of scattering were solved 
approximately; making use of the method of ad
joint equations, 3 it is possible to find their exact 
solution. 

Let us write the basic equations of cascade 
theory with account of scattering: 

cos& ~: = L 1 [P (E0 , t, E,.&), (1) 

£2 
r(E0,t,E,&)J+ 4:" ~&P(E0,t,E,&), 

ar 
cos& -ar = L 2 [P (E0 , t, E, &), r (E0 , t, E, &)]. 
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Here P and r are the distribution functions of the 
electrons and photons at the depth t , energy E 
and angles tJ in the shower, produced by primary 
particles of energy E 0 ; L 1 and L 2 are integra-dif-

ferential operators which act on the variable E and 
take into account pair formation by photons, brem
sstrahlung and ionization losses of the electrons; 
!1 tJ is the Laplace operator, E k = 21. mev. 

We apply the following boundary conditions: 

P (E0 , 0, E, ~) = a (E- E0) a(~); (2) 

Integrating Eq. (l) over t from 0 to ro with account 
of the boundary conditions (2), and excluding from 
the second equation the function r v (E 0 , E, 1J ), 

we get for the function P P (E 0 , E, tJ ) an equation 

of the following form: 

- cos~a (E- E0) a(~) 
(3) 

co 

= ~ Pp (E0 , E', ~) cp (E', E) dE' 
E 

cp (E', E)= 2rp' (E', E)+ We (E', E'- E); 

00 

!l·e (E)= ~ We (E, E') dE'; 
(I 

E' 

cp' (E', E)=\ 
W (£" £') W (E" E) 

P ' e ' dE" 
cr(£") ' 

E 

W P and We are respectively the probability of pro

cesses of pair creation and the probability of 
bremsstrahlung. 

Let us investigate the solution of Eq. (3) in the 
form of a series of Legendre polynomials: 

00 (4) 

Pp (E 0 , E, ~) = L 9n (E0 , E) Pn (em;~). 
n~o 

Substituting (4) in (3), multiplying (3) by P m (cos tJ) 

and integrating over cos t'J from -1 to + 1, we get 
the following equation for the function cp : 

n 

(5) 

")n -l- 1 , 
= -~o (E 0 -E), 

where the operator L is given by the expression: 

co 

Lrpn (E0 , E)= ~ 9n (E0 , E') 9 (E', E) dE' 
(6) 

E 

We determine the operator L* so that 

00 

~ Un (E, E1) Ltpn (Eo, E) dE (7) 

E, 

00 

= ~ Cfn(E0 ,E)L*un(E, E1)dE, 
E, 

where un (E, E 1 ) is an arbitrary function satisfy

ing the condition 

(8) 

The operator L * operates on the variable E. Sub
stituting (6) in (7) and changing the order of in
tegration of E and E ', we get 

E 

L*un(E, E1) = ~ cp (E, E') Un(E', EJdE' 
E, 

Multiplying Eq. (5) by u n (E, E 1 ) and integrating 

over E from 0 to ro, we get: 

00 

~ Un(E,E1)[L+~a~ ]9n(E0 ,E) 
(9) 

0 

Taking (8) into account, and also the fact that 
tpn (E 0 , E) = 0 for E > E 0 , we have 
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co 

~ Un (E, £1) ~ 0~- 'fn (E0 , E) dE (10) 

0 

0> 

=- ~ 'Pn (E0 , E)~ oun~;· E1) dE. 
0 

Equation ( 10), together with (7) and (9), gives 

co 

~ 'Pn(Eo,E)[L*-~ :E ]un(E,E1)dE 
0 

(11) 

=-

If the function un (E, E 1 ) in Eq. (11) is given, then 

Eq. (11) can be regarded as an integral equation for the 
function Cfln (E 0, E). One can make use of the arbi-

trariness of the selection of the function un (E, E 1) 

in that (11) was solved more easily than (5). We 
assume that the u n (E,E 1) satisfy thee quation 

(12) 

=- a(£-£1)(2n + l)j4r:. 

It then follows from (11) that 

i.e., solution of the primary equation (5) is equi
valent to a solution of (11). We make use of (12) 
so as to obtain an equation for the determination 
of the energy part of the integral distribution 
function 

co 

Np(E0,E,&)=~ Pp(E0 ,E,&)dE. 
E 

For this purpose, we integrate (12) over E 1 from 

E 2 to co, taking it into account that the operator 

L * acts only on the variable E, and that when 
(12) is sati;fied, u (E,E 1 ) = cpn (E, E 1 ). Substi-

n . 
tuting E forE and E for E, we obtmn as a re-

2 0 
suit 

(14) 

co 

f n (Eo, E)=~ 'fn (E0 , E) dE. 
E 

Equation (12) is known as the associated equation 
to Eq. (5). 

Let us consider the equation for the energy part 
of the nth component of the function N without 

p 

account of the ionization loss: 

L''fn(E,E1)=-(2n+I)j41't. (15) 

The solution of (15)was given by Belen'kii: 5 

(15 ') 

Un (E, £ 1 ) = [(2n + 1) / 4r.] q£2/[(q2 £ 2 

+a~ ~2) (q2 E~ +a~ ~2)]-'i• for E > E' 

q = 2.29; 

This solution is exact for the value of E << E . 
1 

The function u n (E, E 1 ) in Eq (11) depends on E; 

it satisfies the condition (8); in other respects, 
it is completely arbitrary. For un, we use the 

function (15 ') and assume that it satisfies Eq. 
(15) exactly for arbitrary values of E. 

The function un (E, E 1 ) has a discontinuity for 

E = E 1 • Consequently, forE= E 1 , the 

following equation holds, (for £ 2 q2 > a~ ~2 ): 

(16) 

Transforming to the function fn (E 0 , E) and re

placing E 1 byE, we get Eq. (11) in the following 

form: 

(17) 

_ ~ E of~ (E0 , E) 

Vq2£2+ a~ ~2 iJE 

2n + 1 E0 

= ~ vq2£2+a7,~2· 

For an = 0, it coincides with Eq. (77.4) of Ref. 
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3 for the "equilibrium" spectrum without account 
of scattering, obtained by the same method. 
Consequently, 

It is not difficult to find the solution of Eq. 
(17): 

fP (E £) = ~ + 1 ~-
n O• 47t q 

(18 ') 

":.' ( an+ V X2 +a~ ) an dx 
x ~ exp (-ll x2 +a~) x X2 · 

" 
For an = 0, Eq. (18 ') coincides with (18). For 

i > > an , E q. (18 ') transforms to 

•• 
fP (E £) = 2n + 1 -~ e" E \ e-: dx 

n o• 47t q ~ X" 

n = 0, 1, 2,. 

and under the condition t 0 > > t , we get an asymp

totic expansion identical with the expansion of 
the equilibrium spectrum without account of scat
tering: 

P _ 2n + 1 ~ __!_ ( 1 _ 2.) 
fn(Eo,E)- 47t q E e: 

n=O, 1, 2, ... 

Fort<< a , Eq. (18) becomes 
n 

fP(E E)= 2n+ 1 ~ _1_ 
n o• 47t q an + 1 ' 

n = 1, 2, 3, 

while for f 0P we obtain the following asymptotic 

expansion for small i :1 

where C = 0.5772 is Euler's constant . 
For an estimate of the approximation of the equa

tion for the "equilibrium" spectrum of Belen'kii 
and Maksimov 2 , we compute theratio t: (E 0 E)/fn(t). 

The function f P is determined by Eq. (18), while 
n, 

TABLE 

1 0.0 1 0.2 1 0.5 1 1.0 1 2.0 1 5.0 10 25 

. 
f IP(Eo, E)//1(e:) 1.00 0.98 

fzP(Eo, E)/ /z( e:) 1.00 1.00 

fn ( i) is the corresponding function computed in 

Ref. 2. The results of the calculations of this 
ratio are given in the Table. It is seen from the 
Table that the functions fP (E , E) and f (t) coin-

n 0 n 

cide within the limits of 6%. We note that the 
expression for the "equilibrium" spectrum (18) is 
still approximate, since the initial equations are 
approximate (in them we made use of simplified ex-

pressions for the cross section of elementary proces
ses, taking the Compton effect approximately into 
account). However, in Ref. 1, an approximate "equi
librium" spectrum (without account of scattering) 
was obtained from these equations; this spectrum 
did not differ from the exact value by more than 4.5%. 

0.97 0,99 0.99 1.03 1.01 0.94 

1.01 1.03 0.99 1.00 1,02 1.06 

The equations (1) take multiple scattering accurately 
into account, so that, evidently, the "equilibrium" 
spectrum (18) differs from the exact also by no more 
than 4.5%. 

In the completion of this research, the author 
made use of the valuable advice of Prof. S. Z.Belen: 
kii. 
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The general form of the eigenfunction of an electron iin a periodic electric and a 
uniform magnetic field is derived, The equation of motion and the quasi-classical energy 
levels are found for an electron with an arbitrary dispersion law in a magnetic field. The 
broadening of the discrete energy levels of an electron in a. crystal in a magnetic field 
is calculated. 

T HE magnetic properties of a metal are deter-
mined on the basis of the magnetic properties of 

the electron "gas." The latter isclosely con
nected with the energy spectra of the electrons. To 
elucidate the magnetic properties of metals, we can 
go by either of two paths. We can make an as
sumption on the concrete form of the dispersion law 
and on the basis of this assumption construct a 
theory, in the comparison of which with experiment 
several numerical parameters are determined. The 
approximations of weakly bound 1,2 or very strongly 
bound2-4 electrons apply to such a type of as
sumption. The second path consists of a search 
for the connection of the magnetic properties of 
the electrons with the law of their dispersion in the 
general form. In this case the concrete form of the 
dispersion law which holds in each separate case 
can be determined from a comparison of theory with 
experiment (in particular, with experiments on the 
de Haas-van Alphen effect), although such a com
parison is considerably more difficult than is 
shown above. 

Such a cow·se of action was first pointed out by 
I. Lifshitz and Kosevich, 5 who determined the 
energy levels of the electron and the magnetic sus
ceptibility of an electron gas in the quasi- classi
cal approximation. 

In this resea-ch, a central assumption is that 
the Hamiltonian of an electron with an arbitrary 
dispersion law E (px, Py , Pz) in a magnetic field 

can be determined by replacing Px , Py ,p z by the 

s;,ompgnen..\_s of the linear momentum operator 
P", p 'p. • y z 

The present paper is a continuation and devel
opment of the work reported in Ref. 5. 

The fiirst Section gives the general form of the 
exact eigenfunction of the electron in a uniform mag
netic and a periodic electric field. Later, we give 
an approximate equation of motion of the electrons, 
which is shown to be identical to the Hamiltonian 
constructed by I. Lifshitz and Kosevich. 5 A quasi
classical solution of this equation and the energy 
levels of the electron have been found. 

In the last Section, we consider the effect of 
broadening of the discrete energy levels of an 
electron (in a magnetic field) into narrow bands 
under the action of the periodic field of the lattice. 
The author has pointed out this broadening in 

. 1 2 I h previOus papers. ' n t ese researches, a cal-
culation of the broadening of the levels was car
ried out in the approximations of weakly coupled 
and strongly coupled electrons. In the present work, 
this broadening is calculated outside theframework 
of the approximations pointed out; the results of 
the researches of Refs. I and 2 are entirely sub
stantiated. 

2. EI•GENFUNCTIONS OF 1HE ELECTRONS 

Let us write out the Schrodinger equation for 
an electron in a periodic electric potential V 

p 

and a uniform magnetic field H = H [the vector 
z 

potential A = ( -Hy , 0, 0)] : 

il~ = -- (tt2 I 2m) 11.~- (i(J.Hya~ 1 ax) (l) 

+ (e2H2y2 I 2mc2 + Vp) ~ = E~. 

We introduce the translation operator of the electron 

T m. m = (mlal, 0, maaa) is the vect<r of the lattice 
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