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A fourth ocder expression containing three-body forces is obtained for a two-field 
interaction Hamiltonian, An expression is obtained for 1he energy matrix element of triple 
collisions between two electrons and an 01.-particle, and computations are performed for the 
11 S state of helium. The resulting shift is found to be 1.02 ± 0.15 cm-l and does not re­
move the discrepancy between theory and experiment. Some effects which might be invoked 
to bring the theory into agreement with experiment are discussed. 

T HE presence of a three-body interaction in a 
system of three particles does not lead to di­

vergences and the Hamiltonian is conveniently 
written in the Schr'Odinger representation. In order 
to do this, let us apply Eq. (1.8) of a previous 
article* for lV = 4 2. 

(ia 1 at+ Yes) 'f (r, t) = o; (l) 

Yes= e--iS, [e-iSz (e-iS1;;teiS1) eiS,] eiS,, 

As in Ref. l, the resulting Hamiltonian foc the 
system 

contains the Hamiltonians for the free fields 
(H 0 ), the interaction of the particles with trans-

verse photons (H~7 ), and the Coulomb interaction 

(H 21 ). In the case of helium, these terms (exclud-

ing their operators S k (see reference l) consist of 

the following parts: 

Ho = Ho., + Hoa +Hoy, H~ =Hi~+ H~; 
S1 = S1e + S1a. H; = H;ee + H;aa + H~ea; 

S2 = S2ee + S2aa + S2ea, 

where Hoe, H ocx.• Hoy , are respectively the Hamil­

tonians for free electrons, ~particles, and photons; 
tr tr l l h l 

H le' H lOI. and H 2 ee, H2 01.01., 2 e01. are the Hamil-

tonian interactions for electrons and cx.-particles 
with transverse photons, and the Coulomb inter­
action between electrons, between ~particles, and 
between electrons and cx.-particles. 

It follows from Eq. (2) that the lst and 2nd 
order Hamiltonians, even for two fields interacting 
through a third, consist of physically different 
types of terms. Thus, expanding the phase factors 
in J<j8 into S 1 , S 2 , ••• , leads to a complicated 

*Here and below, we use the notation of Ref. 1, without 
further comment. 

expression in which the same processes are de­
noted by terms of different structure. For example, 
the transverse part of the two-body interaction 
between electrons and cx.-particles consists in this 

case of two terms. 

The expression for the 4th order Hamiltonian 
may be rid of redundant terms and thereby sim­
plified in the following manner; instead of ex­
panding Eq. (l) in terms of S 1 , S2 ••• , expand 

it first in terms of sle for example, then slOI.' 

S 2 ecx.• 8 2 01.01. and so on. The transverse part of the 

two body interaction then becomes 

Carrying out such an expansion of the phase 
factors in Eq. ( l), leads to the following expression 
for H 

4 

(3) 

where 

- ~ [S2"'"'' H2o:o:l (5) 

describe the interactions of electrons and cx.-parti­
cles among themselves and with transverse photons 
(H 4 ee and H 4 01.01. differ only in their indices); the 

term 
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quired matrix element 

(10) 

which represents the correction to the nth energy 
level of a helium atom due to three-body forces. 

Expression (3) is too complex and cannot be solved 
exactly. Therefore we shall take a! vantage of 
the smallness of the effect we are investigating, 
and we shall simplify (lO) by replacing : H :ea..: 
by its nonrelativistic approximation. It is con­
venient to use the diagonal representation of the 
field operators, wherein the Hamiltonian for the 
free photons is in diagonal form.* 

Carrying out the required transformation, we find 

!l.3En = (Z.~aq~ ~ dx1 dx2 dx4 (ll) 

X { 4 a~i 'f~b (x2, x4I) a:2i ~ab (x21• x4) 

xi 

+ 0: 2 (~:b (x2, X41) [O'a [X~O'b]) ~ab (x21• X4)) 

where o (a) is a delta function, c (a) is a sign 
function, and tjJ ab (x2 , x4 ) is the wave function for 

a three particle system in the center of mass coordi­

nates. Its space part may be identified for the 11 S 
state of helium with the Hy lleraas function or with 
the screened wave function. There is no sense in 
using Hartree's method in Eq. (11), for although this 
method yields the best value to the zero approxima­
tion E 0 , it leads to non orthogonal wave functions 

n 

and various potentials for the electrons thus ex­
cluding a consistent application of perturbation 
theory. 

The integrals in (ll) are very complicated and can 

*As is well known, the transition to this representation 
can be made in thecase of spinors with the aid of the 
unitary transformation. 

only be evaluated approximately. They were com­
puted graphically for the 11 S state of helium making 
use of the three-term Hylleraas functions and it 

was found that 

/:l.3£ = (1,02±0.15) C.M-1, (12) 

which is beyond the present limits of experimental 
uncertainty. 

The main contribution to this quantity arises from 
the third term of (ll), and is due to the spin-spin 
part of the interaction. It contributes 1.1 ±0.13 cm-1 
to ~3 E. 

The first term in (ll) represents the orbit-orbital 
part of the interaction, and yields a small correc­
tion to this quantity, viz., -0.09 ± 0.03 em. -1 The 
second term of (ll) represents the spin-orbital 
part of the interaction and cannot contribute to a 
shift of the stationary levels. 

The experimental value of the ionization poten­
tial for the 11 S level of helium is I 0 = 198313 ± 
5 cm-1 , while latest computations8,9 lead to 
theoretical value I 0' = 198304 cm-1 ~f one uses the 

besi: value of E~ obtained from an eight-term Hyl­

leraas wave function. 
The correction (12) computed in the present arti­

cle decreases the value of I; to 
II I 

lo = Io -!l.3£ 1,s = 198303 cm-1 (13) 

and cannot bring theory in acccrd with experiment. 
It should be noted that (13) does not by any 

means contain all 4th order relativistic corrections: 
Thus, we have not included the effect of the inter­
action of the atomic electrons through vacuum po­
larization [see Eq. (4a)] which partly explains 
discrepancy with experiment. A second important 

reason for the difference between experimental and 
theoretical values of 10 , is that while the Ritz 

variational method which was used for finding EO 
leads to an increase in the absolute value of n 

En°, there is at present no way of estimating the 

degree of discrepancy between the value found for 
E 0 and the actual minimum of the Ritz functional. 

n 
Thus, when comparing the theoretical and experi-

mental values of the 11 S energy level of helium, it 
seems in order to use the results obtained with the 
eight-term function and the corresponding minimal 

IE~!. 
In connection with this, there is another important 

effect which may be responsible for the difference 
between the experimental and theoretical values of 
I 0 • It consists in the fact that the relativistic 
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(6) 

H4e~ = {--;? [su, [sv, H!e~-; [S1e, H[~l]] 

+ ( -i)2 [s1~• [ S1e, H!- ~ [ S1e, ; Hi~+ Hi~]]] 

- i [ S2e~. ~ H2e~ + H2~~] 
describes the interaction between electrons and 
ex:-particles, and free photons among themselves. 
Note that the particular nature of the fields e, ex, y 
have not yet been specified in equations (3) to (6), 
and these expressions may be used for describing 
the general interaction of two fields in the 4th 
order. 

We shall now make use of the Hamiltonian H 
4 

to obtain the relativistic corrections to the terms of 
the helium atom. As is well known, the wave 
functions for He and the zero- order approximation 
eigenvalues £0 of the Hamiltonian operator are 

n 
obtained in the Coulomb interaction approximation 
(see for example Ref. 3). We must therefore omit 
from E qs. (3) to (6) all the terms which include only 
longitudinal components as these have already been 
included in the zero order approximation. This may 
be achieved by replacing everywhere S 2 by S 2 tr • 

The Hamiltonian H: obtained in this fashion repre­

sents a small correction to (H 0 + H 2l ) and is of 

the same order of magnitude ( "' 1 cm" 1 ) as the ex­
perimental uncerta~nty. In computing the matrix 
elements < n I H I n > , it is justified to keep 

4 , 
only the largest terms in H 4 , specifically those 

terms which contain the time component of the cur­
rent of ex:-particle, in as much as the terms contain­
ing the spac:e components of the current of ex:-par­
ticles lead to a correction 6. En which is far below 

the limits of experimental detection. 
Accordingly, we can write the followil!g approxi­

mate expression fort he component of H capable 
4 

of producing in helium a measurable change in E n°: 

(4a) 

H~~~ = 0; 
(Sa) 

The effect of triple collisions of an ex:-particle 
and two electrons will be included in H ' • As 

4e a 
already stated, it does not lead to an "ultraviolet 
catastrophe" and can conveniently be written in 
the Schrodinger representation. The operators 
which appear in it have the following explicit form 
(see Refs. (1) and (4): 

(7) 

str = -q2 \ dp1dp2dPadP4 ~ (p + ) (8) 
2ee 4t(2n;)a J p12 ° 12 Pa4 

X . I/J~a.ilji21ji;a.ih-I/J:a.il)ialji;a.iljil: 811-p~2iP~2i +A; 
e:2 + e:4 - e:1 - e:a P12 - e:1 + e:2 

z -Zq2 

H2ea = (2:-r)3 (9) 

\ dp1dp2dP1dP2 ~ (p + p ) . ,•,,, .n*.n • £ 1 + £ 2 
X J 2 0 12 ·12 • \f1'1'2w1w2 • V . 

P12 2 E1£2 

Here and from now on, a . (k) denotes an anni-
' 

hilation operator for transverse photons with mo-
mentum k, polarized in the i direction ( i = 1,2,3); 
tP ka = •of; a (p k) (<I> ka = <I> a (P k) denote annihilation 

operators for electrons (a-particles) with momentum 
P k (P k ); A which appears in S i~e contains the 

photon operators; the two dot symbols denotes a 
normal product of field operators; 

Ek = V P~ + M 2 , ek = + V p~ + m2; 

M, m are the masses of the a-particles and the 
electrons; cx, f3 are Dirac matrices; ab, [ab]', [abc] 
denote respectively scalar vector, and triple 
scalar products; the units are such that c = fr 
= l, q == y;rrr. 

Substituting operators (7) to (9) into Equation (6a), 
and keeping only normal products, we find the re-
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corrections contained in (13), were computed with 
a simple Hylleraas function instead of the eight­
term function; thus there is no guarantee that the 
value of some of these terms would not change if 
they were evaluated with an eight-term function. 
This is especially true of the orbit-ocbital part 
of the 2nd order relativistic correction, 8 where not 
only the magnitude, but even the sign depends on 
the choice of wave function. Furthermore, one 
should evaluate more correctly the Lamb shift in the 
electric field of the nucleus; this has been done 
so far using screened wave functions. 

As for the relativistic corrections whose sign 
does not depend on the choice of wave function, for 
example the spin-spin part ofthe two and three­
body interactions, it may be expected that the use 
of an eight-term Hylleraas function instead of the 
simpler one will not produce a noticeable change 
in the numerical values of these small quantities; 
this is indicated, for example, by the fact that in 
computing ER with various Hylleraas functions, the 

results were found to differ only in the fourth place. 
On the basis of this analysis it may be expected 

that including the effects discussed above will lead 
to agreement between theoretical and experimental 
value for /0 within the limits of experimental ac-
curacy. 

In conclusion the author wishes to express his 
gratitude to Iu. M. Shirokov foc his continued interest 
in this analysis and to V. N. Ts' itovich for check­
ing the formula. 
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A new method has been developed for investigating betatron resonances. Parametric 
resonances are- investigated. 

1. EQUATIONS OF MOTION 

THE equations describing betatron oscillations 
about some plane periodic orbit in a strong 

focussing synchrotron 1 have the following form: 

d2r 1 ( l )2 iJH 
d6 2 + p 21t ar r 

= - - - (P - pH 0)-o - r 1 ( l )2 { 1 (iJH) 
P 21t p iJr 

iJH --z 
i)z 

( 1) 

(2) 

d2z 1 ( l )2 iJH 1 ( l )2 { (iJH) 
d62 - p 21t or z = p 21t H Po + 0 or z 

iJH ~ anH [ rn-lz rn-szs ]} 
- oz r + nf2 arn (n-1)! -3!(n-3)! + ... ' 

where r denotes the radial and z the vertical devia­
tion of the particles from their periodic orbit; p (0) 
is the radius of the orbit. The "angle" e changes 
by 2 IT over a period length l ; aH I ()r is the gradient 
of themagnetic field, a (iJH/iJr.) is the error in the 
gradient; 1/P = e/ cp, where p is the momentum of 
the particles. The series of unessential terms in 
(1) and (2) are discarded; we neglect He in the fre-

quency. 
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