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IT is well known that the heat capacities .of lami-
nar and chain structures do not obey the DeBye 

law C"' (T/ 8)3 at low temperatures. In the work 
of I. M. Lifshitz 1 •2 it was shown that the deviation 
irom the T3 law is associated with the special 
role of bending waves in such structures. The 
anomalous form of the dispersion law (the relation 
between the frequency <iJ add the wave vector K 
for bending waves leads to an anomalous tempera
ture dependence of crystal energy. In Ref. 2, the 
dispersion law was obtained for bending waves 
in strongly anisotropic media, and the corresponding 
heat capacity of a laminar crystal was calculated. 
For temperatures at which the interaction between 
layers may not he neglected (T«:rJ8X H. 

where TJ and (are small elastic moduli), the for
mula for the heat capacity obtained in Ref. 2 rna y he 
transformed into the form* 

Cs2 1 A = ('~Is) + 2 {3K (s)- sdK (s) Ids}, (l) 

(2) 

~ = ~1) I 15, s = a'1J 28 1 4rrvaT, 

where 11 is the "transverse stiffness" of the 
layers (v "' I), a 'and a are the atomic distances 
in the layer and normal to it, and 

(3) 00 

K ( ) = \' t 2 arctg (t 1 s) dt 
s j e2nt -1 . 

0 

Using an integral representation for ln f' (s) 3 , 
it is easy to show that 

dK (s) 1 s2 [ d 1 J (4) ----cfS = - :,:4 - -z- ds In r (s)- Ins + 28 . 

zo 11 10 
· millijouies 
~ mole deg. 

100 

as~------~~~--~----~~--~M 

I Jl 

1 2 J 'I T•H 

Lattice part of the heat capacity of graphite, 5 /-data 
for the region 1.0-4.4 ° K. //-data for the region 4.0-21.0° 
K. Solid line-theoretical curve. 

In the region of temperatures under consideration, 
the term 

~/sz~TMN:.I 

and may he neglected. From Eqs. (l) and (4) we 
obtain the precise formula: 

1 d d2 1 
Ads (Cs2) = s3 ds2 In r (s)- s (s +1)- (f, (5) 

where d2lnf/ds2 is a tabulated function. 4 Thus, 
in the region of very low temperatures (T~1)8, ~f)l 

it is easy to tabulate the heat capacity of laminar 
crystals with the use of one graphical integration. 

A comparison with experiment is possible in 
spite of the fact that the elastic constants in the 
region of temperatures under consideration are not 
known for laminar lattices. In fact, for 

s-0: s2CIA-0.0914 

(the region of quadratic dependence of he at capacity 
on temperature); and for 

(the region of cubic dependence). Determining the 
combinations of constants required for Eq. (2) by 
the limiting laws, the entire c~ve may he con
structed. 

Until very recently, the necessary experimental 
data was not available. The data of Keesom and 
Pearlman5 , which appeared recently, allowed a com
parison with experiment for graphite, as shown in 
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the Figure. Over the entire temperature range, the 
divergence does not exceed 10-15%, and may he 
partly due to the error attached to the exclusion of 
a linear term (electronic contribution to the heat 
capacity). 

It should be noted that Eq. {l), obtained without 
appealing to models, but on the assumption of 
strong anisot1ropy, and yielding satisfactory agree
ment with experiment for graphite, cannot lay 
claim to a detailed agreement with experiment for 
lattices that are not so strongly anisotropic l¢tices, 
e.g., laninar halide salts of cadmium. 6 However, in 
the same way that DeBye's interpolation formula 
gives good agreement with experiment in the 
general cases up to T "' e, while the precise 
cubic law ceases to he fulfilled very early, so also 
in the anisotropic case it may he expected that the 
interpolation formula obtained by the use of the 
limiting law of dispersion in Ref. 2 by an integra
tion along k, not to infinity, hut to the boundaries 
of the wave vectors, will give better agreement 
with experiment at low temperatures and will be 
applicable to a wide class of laminar structures. 
This is due to the rel<tively great stability of the 
integrals expressing the heat capacity under varia
tions of !:4e dispersion law. 7 and to the considerably 
greater influence of the upper limit of integration, 
which is taken into account by cutting off at the 
boundaries of the wave vectors. 

It should be noted that in structures in which the 
layers differ (for example, in cadmium iodide, in 
which they are not monatomic and the surfaces of 
iodine ions facing one another have different posi
tions with respect to the origin in a hexagonal 
system of coordinates), soft optical branches asso
ciated with weak interactions between layers may 
also contribute to the heat capacity. 

The last remark was made by Prof. I. M.Lifshitz. 
We take this opportunity to thank him for his in
terest in this work. 

*A direct numerical integration of the I. M. Lifshitz 
formula was per formed by N. N. Lazarenko (diploma research, 
Kharkov State University, 1954). However, the accuracy 
attained therein is insufficient for comparison with ex
periment. 
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T HE reaction C l2 (p,pn) C 11 (1) is widely used 
for the measurement of proton flux. In con-

nection with this, it is of interest to determine the 
value of the cross-section for this reaction for 
various proton energies. The excitation function 
of the reaction (l) was measured by Aamont and 
others 1 for energies from the threshold energy up 
to 340 mev. Comparison of the results of Ref. 1 
with the data obtained by Soroko2 (see Figure) in
dicate a rapid decrease of the cross-section in the 
300-460 mev range. However, the measurements of 
the ratio of the values of the cross-section at 
290 mev and 660 mev revealed 3 that, in this ener
gy range, the value of the cross-section for the 
reaction {1) decreases much more slowly. The 
mentioned·ratio was found to he 

cr (6i0) 1 cr (2!-JO) = 0.84 ± 0,03. 

We therefore concluded it probable that a sy:ste
matic en·or ("' 15%) in the determination of the ab
solute cross-section in one of the References 
1,2 is tha real cause of the discrepancy. Results 
similar to those obtained in Ref. 2 were soon ob
tained in new investigations4 ,5 in the 410-460 mev 
range. Finally, the cross-sections in the 170-
350 mev range were measured with great accuracy 
by Crandall et al, 6 (see Figure). The values found 
in Reference 6 are in good agreement with the 
data of Refs.2-5. The cross-sectiops given in 
Ref. 1 are, evidently, systematically larger ~y 
some 15--25%. 

The existence of these discrepancies led us to 

the investigation of the reaction (l) in the 150-660 
mev range. In the course of the experiments, a 
graphite target was placed in the chamber of the 


