is quite small⁸, although it may be of theoretical interest in the analysis of the performance of electronic instruments.

- 1L. R. Smith, Phys. Rev. **69**, 195 (1946). 2 D. Gabor, Phil. Mag. **41**, 1161 (1950).
- 3 I. R. Senitzky, Phys. Rev. 91, 1309 (1953).
- 4 I. R. Senitzky, Phys. Rev. 95, 904 (1954).
- 5 I. R. Senitzky, Phys. Rev. 98, 875 (1955).
- 6 P. S. Farago and G. Marx, Acta Phys. Hung., 4, 23
- (1954); Phys. Rev. 99, 1063 (1955).
- 7 J. Weber, Phys. Rev. 94, 215 (1954); 96, 556 (1954). 8 V. L. Ginzburg and V. M. Fain, Radiotekhnika i
- Elektronika 2, (1957).
- 9 H. B. Callen and T. A. Welton, Phys. Rev. 83, 35 (1951).
- 10 V. L. Ginzburg, Uspekhi Fiz. Nauk 46, 348 (1952); Fortsch. d. Physik 1, 51 (1953).
- 11 V. L. Ginzburg, Dokl. Akad. Nauk SSSR 23, 773 (1939); 24, 130 (1939).

12 A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics, Sec. 32, GTTI, 1953.

Translated by E. Rabkin 33

On the Problem of K^0 Decays

I. IU. KOBZAREV

(Submitted to JETP editor October 25, 1956) J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 180-181 (January, 1957)

I F we assume that in K-meson decays parity is conserved, then from the whole of the experimental data it apparently follows that there exist two mesons τ and θ with spin and parity 0⁻ and 0⁺ respectively. Then it must be supposed that there exists a certain "degeneracy in parity" for the "strange particles"¹. On the other hand one can assume that there exists only one K meson and that parity is not conserved in the decay interactions². In the present note we point out one possibility for an experimental test of the hypothesis of nonconservation of parity.

We suppose that parity is conserved and consider the decay of a τ^0 meson. The possible decay schemes for it will be

$$\tau^{0} \swarrow_{3\pi^{0}}^{\pi^{+} + \pi^{-} + \pi^{0}}, \quad \tau^{0} \to \frac{\mu^{\pm}}{e^{\pm}} + \nu + \pi^{\mp}.$$

Like the θ^0 meson, the τ^0 meson must represent a mixture of charge-even and charge-odd components

$$\tau^{0} = \left(\tau^{0}_{s} + i\tau^{0}_{a}\right)/V\overline{2}$$

 au_s^0 will decay according to all four possible schemes, with the decay $\tau_s^0 \rightarrow 3\pi$ being the isotopic analogue of the τ^+ decay.

For τ_a^0 the decay $\tau^0 \rightarrow 3\pi^0$ is forbidden, and the decay $\tau^0 \rightarrow \pi^+ + \pi^- + \pi^0$ must go into states with orbital angular momentum different from zero and will be suppressed, so that the main decay for it will be

$$\tau_{\mu}^{0} \rightarrow \frac{\mu^{\pm}}{e^{\pm}} + \nu + \pi^{\mp}.$$

For both components the lifetime will be of the order of 10^{-7} sec.³

The situation is fundamentally changed if we assume that there exists one K meson but that decays occur with nonconservation of parity. In this case the main decay for the K_s^0 component will be $K^0 \rightarrow \pi^+ + \pi^-$; this decay is a fast one, so that the lifetime of K_s^0 will be $t \sim 10^{-10}$ sec. The charge-odd component, for which two-meson decay is impossible⁴, will decay mainly according to the schemes

$$K^0 \rightarrow \frac{\mu^{\pm}}{e^{\pm}} + \nu + \pi^{\mp} \text{ or } K^0 \rightarrow 2\pi + \gamma$$

with lifetime $t \sim 10^{-8} \cdot 10^{-7}$ sec.

Let us consider the decay curve of $\tau^0 \rightarrow \pi^+ + \pi^ +\pi^0$. In the case of conservation of parity, we must observe two slightly separated exponentials with nearly equal lifetimes $t \sim 10^{-7}$ sec. But in the case of nonconservation of parity we must observe together with an exponential of lifetime $t \sim 10^{-8}$ -10⁻⁷ sec a short-lived component with lifetime of the order of 10^{-10} sec.

I express my thanks to I. Ia. Pomeranchuk for a discussion.

2 R. P. Feynman, Proc. Sixth Rochester Conference.

3 G. A. Snow, Phys. Rev. 103, 1111 (1956). 4 M. Gell-Mann and A. Pais, Phys. Rev. 97, 1387 (1955).

Translated by W. H. Furry 43

¹ T. D. Lee and C. N. Yang, Phys. Rev. 102, 290 (1956).