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in the Schrodinger representation may be considered 
to be worth while only in those cases when the 
process under investigation is not connected with 
field divergences and does not require the regulari­
zation of the equations. In such cases if we write 
the equations of motion in the Schrodinger repre-

sentation we shall obtain expressions of simpler 
structure which do not require integration over the 
fourth coordinates. However, in order to investi­
gate field processes in quantum electrodynamics 
it is more convenient to write the equation of mo­
tion in the Tomonaga-Schwinger form. This guaran­
tees a manifestly covariant form for the Hamilton­
ian of each order, and allows the equations of mo­
tion to be regularized directly. 
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Two parameters which characterize the cross sections for quadropole transitions in the 

nuclear photoeffect are estimated [formulas (22), (25) ]. Other (known) parameters which 
characterize the dipole transition cross section are used for this purpose. The estimates 
indicate that, in intermediate and heavy nuclei, the "center of gravity" of the quadropole 
transition cross section is situated at energies exceeding 10-20 mev. 

THE previous theoretical estimates 1 -3 of the 
parameters which characterize the total cross 

sections for electric quadropole transitions in the 
nuclear photoeffect are based on the liquid drop 
model of the nucleus Oet us denote this total cross 
section by aE 2(v), where vis the photon energy). 

These estimations allow us to assume that the 
cross section a E 2 has at least two maxima. The 
first maximum is in the range of energies of the 
order of l mev, which correspond to the e igenfre­
quency of nuclear surface vibration. The second 
maximum takes place on the right of the dipole 
resonance ener-gy, at energies of the order of 20-40 

mev -which correspond to the lowest eigenfre­
quency of the nuclear matter polarization quadropole 

vibrations. The cross section area under the second 
maximum is appreciably larger than the cross section 
area under the first one. 

In order to obtain a model-independent confirma-

88 

tion of the conclusion of Danos and Steinwedel 2 -3 

on the existence and on the role of the second maxi­
mum, we will consider two sum rules which charac­
terize the cross section for quadropole trans it ions. 
These sum rules [see formulas (19), (20) and also 
(22), (2S)] relate the cross sections a E 2 (v) with 

some constants (with respect to v) which depend 
on the nuclear structure. For the calculation of one 
of these constants (the calculation of the other one 
is trivial), we make use of that phenomenological 
expression for the coordinate distribution of two 
protons in a nucleus which is experimentally con­
firmed in the case of dipole transitions. For this 
purpose, the first step of this work consists in re­
considering two known sum rules which correspond 
to the cross section for dipole transitions. 

1. DIPOLE TRANSITIONS 

In the present section, we are interested in the 
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two followin~ sum rules which have been considered 
previously 4 -

"" 
~ 1L 1 • • 

aE (v) dv = 27e2 - -.~ (DD- DD), 
1 C ltL 

(1) 

0 

(2) 

a E 1 (v) is the total cross section for dipole 

transitions and the symbol<> means averaging 
over the ground state of the nucleus; D is any of 
the components of the dipole moment operator in 
the long wave length approximation. To be speci­
fic, let D = D = L e z , where e and z are the z 0:: 0:: <X <X 

charge and the z-~omponent of the coordinate q"' 
of the cx.-th nucleon. The dot above the operator 
stands for i/li times the commutator with the 
Hamiltonian of the nucleus. 

The coordinates q"' are related by the condition 

~~ q~ = 0, (3) 

which expresses the. fact that we are dealing with 
the relative coordinates subspace. 

Using Eq. (3) and after some transformations, 
we get 

where Nand Z are the neutron and proton numbers; 
m is the nucleonic mass;~ is a positive quantity 
for the calculation of which it is necessary to 
know l) the ground state wave function of the nu­
cleus, and 2) the exchange part of the nuclear po­
tential; in the absence of exchange, ~ = 0. 

The theory4 •5 gives the following estimate for 
~: 

~ ~ 0. I A2/NZ ~ 0,4. (5) 

This estimate is in excellent agreement with a 
more exact investigation which can be carried out 
in the case of photofission of the deuteron. 

The right hand side of the sum rule (2) is com-

puted in Ref. 7. (See also Refs.6 and 8). In the 
present Section, we are going to consider the sum 

rule (2) from a somewhat different, phenomenological 
point of view. 

Let us introduce the functions n (r) and n 2 (r, r) 
p p 

describing the co ordinate distribution of two pro­
tons in a nucleus 

(6) 

x ~ ~ (o (r- qp.) o (r'- qp.)), 
P1'-frPz 

(7) 

Using the distributions n P and n2 P the expression 

< D2 > can be rewritten in the form 

(8) 

(9) 

(rr')2p = ~ rr' n2p (r, r') dr dr'. 

Let us call ''zeroth" the nucleon. coordinate 
distribution for which all the distributions 

11a~ (r,r') = (o (r- qa) o (r'- qil)) 

do not depend on ex. and fJ; in particular, they do 
not depend on whether the cx.-th and ,8-th nucleons 
are both protons, both neutrons, or are different. 

The functions n 2 and n which describe the 
d. d' ib 'I f pn d f coor mate 1str ut10n o two neutrons an o 

two different nucleons are, in the case of a zeroth 
distribution, equal among themselves and equal to 
n . Takinu this into account, and averaging the 

2 p " 
square of the Eq. (3) over the nuclear ground state, 
we find that the following equality is true in the 
case of a zeroth distribution: 

(r2)~) +(A- 1) (rr')~~ = 0. (lO) 

Substituting (10) into (8), we get 

<D2)(0) = _tC_ _NZ < 2)(0) .~· !_:__ NZ R2 (ll) 
:3 A - 1 r P ·~ 5 A -1 . 

where R is the nuclear radius. 
It follows that in the general case the sum rule 

(2) can be transformed into the form: 

(12) 
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A=- [(Z -1) (A- I)jNZ <r2)p] (13) 

x~rr'n~~(r, r')drdr', 

(1) ( ') ( ') (0) ( ') n2p r, r = n2p r, r - n 2p r, r . 
(14) 

In what follows, we are going to assume that 
the coordinate distribution of a single nucleon, 
given by the function np(r), is the same in the 
zeroth case and in a non-zeroth case; it follows 
then that n ~l; (r, r) satisfies the condition 

~ n~~ (r, r') dr' = 0. (15) 

The previous calculations 6 "8 of the quantity 
< D 2 >show that the main reason for the deviation 
of the true coordinate distribution of identical 
nucleons from the zeroth distribution is the Pauli 
principle; according to it, the approach to one 
another of two identical nucleons is appreciably 
less probable than that of two different nucleons. 
Therefore, to get the qualitative character of the 

l 

function n~1~, it will he sufficient to consider 

the simplest gas model of the nucleus - so far as 
this model takes the Pauli principle into account. 
The result of such an investi'?ation amounts to 
the following: the function n 21; is approximately 

proportional to n ~o; everywhere except in a region 

where the distance between the points r and r' is 
less or of the order of a, a being comparable to the 
mean internueleonic distance. Considering this 
region as being small with respect to the nuclear 
volume (i.e. neglecting the edge effect), we can 
approximate the function n~l) (r, r1 with the help 
of a a-function of r-r ': p 

(16) 

- o (r- r') np (r -~ r') J . 
where nP means (a3/Ra). 

Substituting (16) into (13), we get 

(17) 

2. QUADROPOLE TRANSITIONS 

The expression of the cross section for quadru­
pole transitions in the long wave length approxi­
mation has the form 

Q is any of the non-diagonal components of the 
quadrupole moment operator. To he specific, let 

Using the matrix multiplication rule, we readily 

get 
00 

\ dv 4rr2 -i1L • · . 
) O'£:a(v) V2 = (1ic)3 -2- <QQ- QQ), 
0 

(19) 

(20) 

In the derivation of Eq. (20), we have neglected 
the mean square of the nuclear e igen-quadrupole 
moment with/espe~(Q 00 ) 2 , i.e., we have 
assumed <Q ) ~ Q00)~. Q 00 is the mean value of 

the operator Q in the nuclear ground state. The 
bar means averaging over degeneracy (if any). 

It is easy to note that Eq. (19) is analogous to 
Eq. (1), and Eq. (20) to Eq. (2). This analogy is 
very useful. Let us first consider the right hand 
side of 1E:q. (19). After elementary calculations, 
we get 

- (ihj2) <QQ- QQ> {21) 

< X 2>"' R 2 /5; ~is a positive quantity which 
vanishes in the absence of exchange forces. Let 
us try to obtain the relationship between ·~and 
the quantity ll introduced above. F!J' this purpose 
let us assume some simple expression for the nu­
clear exchange potential energy U; for instance, 

U = 1/2 ~' Uar> (q,. -q~) PaG, 
<X, r> 

where P ""{3 is an operator representing the coor­
dinates q"" and q f3 (calculations with such a U 

are carried out in Ref. 4). Substituting this ex­
pression in the sum rule (1) and (19), we get after 

some calculations 
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Comparing these expressions, one sees that ~ 
has a tendency to be smaller than ~ by a factor 
of about (r /R)2 • This estimate is of colirse very 
inaccurate; however, it does not matter for what 
follows whether we put ~ = 0, in the other limiting 
case, ~ = ~. To be specific, let ~ = 0. Finally 

(22) 

For the evaluation of the right hand side of Eq. 
(20)2 let us first recall that in the evaluation of 
< D > we had to take into account the relationship 
(3) between the coordinates q"' and Eq. (lO), which 

follows from (3). In particular, we were not able to 
write the zeroth distribution n~O) (r, r1. in the form 
of a product of distributions np(r) and n (r1 because 
it would have led to a qualitat~vely inc6'rrect re­
sult: the right hand side of the sum rule (4) would 
have been proportional to Z rather than to ZN/A. 
In the present case, however, where we have to 
compute < Q2 >, we can consider the coordinates 
fL. as independent, not taking Eqs. (3) and (lO) 
into aceount. It is easy to show that the error 
due to this approximation is of the order of 1/ A. 
ln. par_ticula~) we wil.l as_sume that the zeroth dis­
tnbutiOn n~ (r, r1Is simply a product of the dis­
tribution n fr) and rt (r 1. Further the correction 
for the zer~th distrib~tion is given by formula (16) 
according to the condition (17) and with the addi­
tional assumption on the multiplicativity of 

n~~ (r, r'). 

'With these assumptions, the expression 

becomes equal to 

(24) 

Letting , we finally get 

We see that in this case the correlation has an 
effect twice as small (N /A = Y:!) as in the case of 
the sum rule (12) for dipole trans it ions. 

As already mentioned, the function A== A(A) can 
be obtained directly from experiment by substituting 
the observed value of a E 1 into the left hand side 
of the sum rule (12). However, the errors on the 
measurements of a E 1 are now such that the theor­
etical values of A, calculated in Ref. 7, are probab­
ly closer to truth than the experimental ones. The 
theoretical values of A can be approximated with 
sufficient accuracy by the following formula 

A= 0.84 (I + 22/A). (26) 

For A =50, A= 0.6; for A = 240, A= 0.76. These 
values confirm the initial assumption on the small-

ness of the correlation radius a with respect to the 
nuclear radius R. 

Consider the ratio 

~ = r crE2(v) ~~I r crE2(v) ~~ (27) 
0 0 

= 7 (1ic) 2 ___!__ 2.4-102 
mc2 H.2 1 + i\ A/A ~ A'l, (1 _AI\'( A) 

We took R = 1.1 X w- 13 A Z/ 3 em. In the case of 

a nucleus with A= 50, Eq. (27) gives i73 = 25 mev, 
in the case of uranium v 3 = 9 mev. Therefore, 

"a= 10-20 MeV. (28) 

Equation (28) gives a lowest bound for the position 
o~ the "center of gravity" of the cross section for 
quadropole transitions. Indeed, the energy v 0 
corresponding to the "center of gravity" is defined 
by -

oo en 

~ = ~ crr:-2 (v) vdv I ~ crr:-2 (v) dv, 
0 0 

(29) 

whence i7 0 > i7 3 • 

Hence we conclude that the "center of gravity" 
of the cross section for quadropole trans it ion is 
on the right of the dipole resonance, at energies 
exceeding 10-20 mev. 
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numerical coefficients in the expressions that 

result from the calculation of the effects of 

the plasma particles on each other) . 

. . . exp {-(f- \/')} I· .. exp {-(T- V')rl} 

v l (lfJF0jfJx) + ... 
where E l is the pro­
jection of the electric 

field E on the direc­

tion 1 

A= 0.84 (1+221A) 
Tl2o4, 206 

... to a cubic relation. 

A series of points etc. 

where the bar indi­
cates averaging over 

the angle e and E l is 
the projection of the 
electric field E alodg 

the direction I 

A= 0.84/(1+22/A) 
11203, 205 

... to a cubic relation, 
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with points 0, have 
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