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A method is described for constructing electromagnetic interaction Hamiltonians of 
a many-partie le system, based on the usual Hamiltonian formalism. For illustration 
the Hamiltonian for the pair interaction of spinor particles is derived. 

INTRODUCTION 

T HE exact solution of problems connected with 
the many body problem in quantum electrody­

namics is confronted by considerable difficulties 
both of principle and of technique. An approximate 
treatment of this problem is possible by means of 

representing complicated motions of a system of N 
charged particles as a superposition of simpler 
processes, in each of which N ~N '= 2, 3 ... , N) 
real and a certain number of virtual particles take 
part, and by separately investigating each of 

these processes. Due to the work of Schwinger 
it is now known how to obtain the Green's function, 
and also how to obtain and to solve (approximately) 
the corresponding equation for each of these simp-. 
ler systems. 

In this article we propose a different method of 
describing the elementary interactions of which 
the complex motion of the system of N particles 
is composed. In place of a set of Green's functions 
we shall make the system of N particles, corre­
sponding to a set of interaction Hamiltonians of 
different orders. Each of these corresponds to a 
process with a strictly defined number of real 
and virtual particles. As will be seen below, it 
will be possible, by using this method, to calculate 
in a simpler way the relativistic and field correc­
tions to the optical spectra of atoms which have 
their origin in the multiple interactions of the par­
ticles. 

An explicit expression for the .Hamiltonian of the 
N-th order which also contains the term represent­
ing N-fold interactions (N real particles participate 
simultaneously) can be obtained from the usual 
equation of quantum electrodynamics 

(E- :it)~ (x) = 0; 
= (l) 

i=O 
written, for example, in the Schrodinger or the 
Tomonaga-Schwinger representation. In order to 
do this, it is necessary to assume all the processes 
of lower multiplicity (1, 2, ... , N - lth orders), 
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to be virtual, and to exclude the terms correspond­
ing to them from the equations of motion (l) by 
means of unitary transformations. A summation 
over the intermediate states of the 1, 2, ... , 
(N- 1)-th orders is carried out in Eq. (1). The 

result then describes correctly electromagnetic 
processes in systems with N '(N '> N) real and 
virtual particles, and its Hamiltonian will con­
tain explicit expressions of N '= N, N + 1, ... , 
2N - 1 orders which can be directly used to de­
scribe pwcesses in which N 'real and virtual par­
ticles participate. 
The representation of the Hamiltonian of lhe 

N-th order by summing the processes with all 
possible intermediate states possesses a number 
of advantages which make this method convenient 
for the solution of specific problems. 

First of all, in each approximation (in each 

H N) the relativistic invariance of the method is 
guaranteed, since the terms are classified only 
according to the number of particles which they 
describe. This allows one to obtain correct non­
relativistic approximations for the interaction 
Hamiltonians of all orders, even in the Schrodinger 
representation, which is quite useful in view of 
the fact that until now a number of authors 1 •2 

have attempted unsuccessfully to obtain them from 
Breit's equation. 

In the second place, a "preliminary" summation 

over the intermediate states of the interaction 
Hamiltonian makes it unnecessary to calculate 
higher approximations of the interaction energy by 
means of perturbation theory, and consequently 
a knowledge of the complete sets of eigenfunctions 
of the system under consideration in the zeroth 
approxi~~ation is not required. The energy correc­
tions of the required order to the energy terms of 
the atom will be simply determined by the matrix 
elements of the corresponding Hamiltonians. 

In the third place, in this case, just as in the 
case of the expansion of the S-matrix in a power 
series, a "term by term" regularization is possible 
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since the removal of the field divergences from 

each Hamiltonian of the N-th order means their re­
moval from the corresponding approximations of 

the theory. 

1. SETTING UP THE N-TH ORDER HAMILTONIANS 

The basic equation of electrodynamics (l) has 
the following form in the Schrodinger representa­
tion: 

rua 1 at)- .'liJ ~ (r, t) = O; 
(1.1) 

:1t = H 0 + Hi' + H~. 
Here 1/J(r, t) is the wave function of a certain 

system of particles in configuration space, 
H 0 , H 1(, H;- are respectively the Hamil­

tonians of the free fields, of the interaction of 
transverse photons with particles, and of the Cou­
lomb interaction between particles. We assume 
all fields to be quantized and we do not introduce 
a potential of an external field*. 

Let us carry out the unitary transformation 

'f (r, f)= eiS,,v (r, f), (1.2) 

analogous to (1.4) we shall obtain as a result the 
equation 

[(iO I at)- Yt'N-11 ~ (r, t) = 0; 

Yt'N-L = exp {- iSN-1} Yt'N-2 exp {iSN- 1},0·8) 

which correctly describes processes in which N' 
(N '?:_ N) real and virtual particles take part. In 
its Hamiltonian explicit expressions occur for the 
interaction Hamiltonians of the N, N + 1, ... , 
(2N - l)-th orders. 

The Hermitian nature of the operators UN 
occurring in (1.8) and of the individual terms H k 

which they contain is a direct consequence of the 
Hermitian nature of the original Hamiltonian }( and 
of its terms (1.3), and may be easily proved by 
the method of induction with the aid of relations 
(1.2) - (1.8). We shall not go into this, but shall 
directly state a rule according to which the opera­
tors S k should be constructed to satisfy condition 
(l. 7). In order to do this we shall represent the 
operator H k in the form 

H" = ~ dp {hh (p) + h;, (p)}. (1.9) 

by means of which (1.1) is brought into the form Then S k turns out to be equal to 

l(W 1 at)- .7t'1 l ·¥ (r, t) = o; (l.2a) \ d s" =- i j p (1.10) 

00 

·s C'V' ·s ~.., (- i)m 
.v ~e-' 'Jr.-e' '= ---Livl- ml 

(1.3) 

m=O 

X [S1 , [S1, ... [S1, Ho +Hi'+ H;] . .. )]. 
If one demands that 

Hfr- i [S1, Ho] = 0, (1.4) 

then the Hamiltonian of Eq. (1.3) will be free of 
the interaction term of the first order (see also 
Ref. 3). But, as has been noted already above, it 
wiU contain explicit expressions for the Hamilton­
ians of the 2-nd and the 3-rd orders 

H2 = H;- 1M [Sl> HirJ; (1.5) 

H3 =- i [S1, H~- 1M [S1 , Hi'lJ. (1.6) 

Carrying out in turn the 2, 3, ... , k, ... , (N- 1)th 
unitary transformations of the type (1.2) and impos­
ing on the operators S k the conditions 

(l. 7) 

* The introduction into (I. I) of the interaction of the 
particles with an external field does not change the 
following calculations, 

X (h" (p)- h;, (p) )/ ()1. E; (Pi)-~ E; (Pi)), 
\ n p 

where ~ E; ( ~ E ;) is the sum of the free 
n P 

energies of particles of the i-th kind with momenta 
Pj' absorbed (created) by the absorption (creation) 
operators occurring in h k (p); p is the set of all 
the three dimensional momenta occurring in the 

integrand of (1.9). E .(p .) stands for the diagonal­
ized operator for the fre~ energy which in the case 
of Bose-particles is defined by equation 

(l.lla) 

and in the case of Fermi-particles is defined Ly 
equation 

E F( ) 1/r 2 " ; P1 = s;i = ± v Pi + m;. (l.llb) 

It follows from (1.10) that S is a self-conjugate 
quantity. The verification of t'his formula presents 
no difficulties and may be carried out by substitut­
ing into (1.7) formula (1.10) and the expressions 
H 0 and h k (p) which have the form of a product 
of certain c refficient functions by the product 
of field operators. 
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In the Tomonaga...Schwinger representation the 
Hamiltonians H N are obtained in the same way as 
in the Schrodinger representation and have the same 
appearance. For example, the terms H2 , H3 in 
the Tomonaga-Schwinger representation are iden­
tical with (1.5) and (1.6). The difference arises 
only in the explicit expression for the operators 

H k and S k' which in the Tomonaga...Schwinger 
representation are defined on an arbitrary space­
like hypersurface a= a (x1), which passes through 

a fixed point in four-dimensional space (x11) 

where S k is a functional. At the same time the 
expressions which define S k[a] also take on a 
different form. Thus, to Eq. (1.7) in the Tomonaga-

Schwinger representation there corresponds (in com­
plete agreement with Ref. 4, where the expression 
S 1 [a (x 11)] is investigated) the equation 

a 
---- Sk [a (x)] = Hk (x), 

?3cr(x) 
(l.7a) 

by integrating which we shall obtain an explicit 
expression for S k 

co 
(I. lOa) 

Sk[a(x)]=--~ ~ Hk(x')e[a(x), a(x')]d4x', 
-~oo 

where 

.E [a (x), a (x')l = + 1 for x 0 - x~ ~ 0. (C) 

It may easily he seen that with the aid of the 
transformations (1.10) one may eliminate all the 
effects from the equation of motion with the ex­
ception of the self-energy parts. The reason for 
this is that S k commutes here with H 0 and does 
not lead to the appearance in the equation of a 
corresponding counter term with a negative sign. 
Therefore, the self-energy effects should be eli mi­
nated from the equations of motion (1.8) with the 
aid of subtraction devices used in the regltlarization 
procedure. 

2. EXAMPLE. PAIR INTERACTION OF 
SPINOR PARTICLES 

The term corresponding to pair interaction of 
particles (for example, of electrons) in the first 
order in e 2 (H ,, ) is c oiWained in the Hamiltonian 
H2 [see Eq. (i~S)]. The expressions for this 
term, and also for S 1 were first obtained by Snyder3 

who investigated in detail the general covariance 
properties of H 2 e e, and who also attempted to ob­
tain an expression for the electromagnetic mass 
of the electron in this approximation. The for­
mula (l.S) was also utilized in the investigation 
of the problem of positronium 5 and the results 
obtained in that case agreed with those of other 
authors 6 •7 • Therefore, we shall not investigate 
expression (1.5) in detail, but shall show how it 
can be written, and shall compare it with certain 
well-known formulas. 

In the simplest case of electromagnetic inter­
action of spinor particles of the same mass, the 
Hamiltolllian of Eq. (l.l) consists of the following 
terms: 

(2.1) 

where Hoe=~ dpf (p}(ixp + ~m) ~ (p), (2.2) 

Hoy = ~ dkka; (k) aj (k), (2.3) 

Hi~ = 47'_.~ ~ dp1 dpa dkk-'1•& (k- Pd [aj (k) 

(2.4) 

l q2 
H aee = 2 (2rc)" (2.5) 

x ~ dp1 dpa dp3 dp4p;:;2 • o (p 2 + P34) ~;~a•¥;'¥4 

are, respectively, the Hamiltonians for the free 
electrons, for the free protons, for the interaction 
between electrons and free protons, and for the 
Coulomb interaction; ex. • , are the Dirac matrices; 
tfroc(pk) = t/Jkor. is the ah~orption operator for an elec­
tron with momentum pk; a .(k) is the absorption 
operator for a transverse photon with momentum k; 

(D) 

P~ = Prx/ Prx; 

p, k are three-dimensional momenta, and tPte system 
of units is used in which n = c = l, q = v 47T/l3"7 

In accordance with ex:rression (1.10) 

(2.6) 
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Now substituting (2.5), (2.6) into (1.5) and retaining 

there only terms not containing photon operators, 
we obtain for H 2 e e 

q2 
H 2ee = 2 (2rrrl 

X {/Ja i~/5~~ __ ~ij_ , Pf2;P~zi 
PJ 2 2plz 

X ( rx;,~rxjp.v --+-- rx;,~rxjp.v ) \ 

P12- E1 ~~- E2 ' P12 -- E4 -·~ Ea ) 

~ 

(2.7) 

- an expression which describes pair forces be-
tween two electrons. Its covariant nature finds 
its expression in particular in the fact that in the 
case of scattering it reduces to the well-known 
fcrmula due to Moller** 

~ac. q2 
H.,er·= ---

- 2 12;-:J·' 
(2.8) 

X ~ dp1 dpz dp:J dp40 (Plz + P31) 

1 * 1 ! ~· ! ' 1 ' ~· ! 
Y1 2 8zY:ltx;Y4- Y1'1!zYaY4 

PL- (s!- s2)2 

In the case of bound states the first non-rela­
.tivistic approximation (2.7) corresponds to the non­
exchange part of pair interactions and agrees with 
Breit's formula 

q2 
H zec = 2 (2rr)3 

(2.9) 

It follows from (2.9) [or from (2.7)] that Breit's 
formula for the interaction ,energy is equally appli­
cable to the description of non-exchange interac­
tion between electrons, between positrons and he­
tween electrons and positrons: 

** According to Wick's theorem 

Hzee= :H2ee: +: H2ee: 

is equal to the sum of its normal product which de-. 
scribes pair interactions and the normal product w1th 
one pairing which describes the effect of the electron 
self-energy. 

(2.10) 

Here cpab(p1p 2) is the wave function in configuration 
space for a system of two particles; c:ybm is the 

expression for the interaction energy which occurs 

inside l I in (2.9) or in (2.7); 

t- ch ± (rxpk + ~m) 
L~< = ,.,----

2e11 

are projection operators. This result does not agree 
with the "exact three-dimensional equation" (13) 
of Ref. 8. 

·H '(' (p p)- (L+L+ L-L-. zee·tab l• 2 - 1a 2b- la 2b) (2.ll) 

X ~ dp; dp~ GZ~M (p1 , p2 ; p~; p~) ?ab (p~, p~), 

obtained in the Bethe-5alpeter theory. As may be 
seen from (2.ll) the "exact three-dimensional 
equation" of Salpeter excludes first of all any 
possibility of interaction between electrons and 
TJOsitrons, and secondly leads to different signs 
for the interaction between pairs of electrons and 
between pairs of positrons. Both these facts con­
tradict reality, and therefore the "exact three-di­
mensional equation" (13) of reference 8 can be used 
only to describe processes occurring between elec­
trons. 

The covariant nature of (2.7) also manifests it­
self in the fact that it contains a covariant expres­
sion fer the electromagnetic mass of the electron. 
In order to obtain it we must calculate the matrix 
element 1 1 HA 1 ) which turns out to be ,a : zee : a ' 

equal to 

(2.12) 

X \ dp {·..!..._ - -~ + _1 m4 } 
) 2 P12 e2 e2 (p1P2- e1e2)2 - m• 

andcontains only a logarithmic divergence as 
Pz->oo.* 

The calculation of om represents a very laborious 
and painstaking effort, and therefore the explicit 
formulation of the Hamiltonians of the N-th orders 

* In (2.1_2) the matrix element was calgllated ~or 
only the d1agonal part of the operator: H2 ee:, smce 
the matrix element of its non-diagonal part is identi­
cally equal to zero due to the violation of the law of 
conservation of parity. 



G. F. FILIMONOV AND IU. M. SH IR OKOV 

in the Schrodinger representation may be considered 
to be worth while only in those cases when the 
process under investigation is not connected with 
field divergences and does not require the regulari­
zation of the equations. In such cases if we write 
the equations of motion in the Schrodinger repre-

sentation we shall obtain expressions of simpler 
structure which do not require integration over the 
fourth coordinates. However, in order to investi­
gate field processes in quantum electrodynamics 
it is more convenient to write the equation of mo­
tion in the Tomonaga-Schwinger form. This guaran­
tees a manifestly covariant form for the Hamilton­
ian of each order, and allows the equations of mo­
tion to be regularized directly. 
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Two parameters which characterize the cross sections for quadropole transitions in the 

nuclear photoeffect are estimated [formulas (22), (25) ]. Other (known) parameters which 
characterize the dipole transition cross section are used for this purpose. The estimates 
indicate that, in intermediate and heavy nuclei, the "center of gravity" of the quadropole 
transition cross section is situated at energies exceeding 10-20 mev. 

THE previous theoretical estimates 1 -3 of the 
parameters which characterize the total cross 

sections for electric quadropole transitions in the 
nuclear photoeffect are based on the liquid drop 
model of the nucleus Oet us denote this total cross 
section by aE 2(v), where vis the photon energy). 

These estimations allow us to assume that the 
cross section a E 2 has at least two maxima. The 
first maximum is in the range of energies of the 
order of l mev, which correspond to the e igenfre­
quency of nuclear surface vibration. The second 
maximum takes place on the right of the dipole 
resonance ener-gy, at energies of the order of 20-40 

mev -which correspond to the lowest eigenfre­
quency of the nuclear matter polarization quadropole 

vibrations. The cross section area under the second 
maximum is appreciably larger than the cross section 
area under the first one. 

In order to obtain a model-independent confirma-
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tion of the conclusion of Danos and Steinwedel 2 -3 

on the existence and on the role of the second maxi­
mum, we will consider two sum rules which charac­
terize the cross section for quadropole trans it ions. 
These sum rules [see formulas (19), (20) and also 
(22), (2S)] relate the cross sections a E 2 (v) with 

some constants (with respect to v) which depend 
on the nuclear structure. For the calculation of one 
of these constants (the calculation of the other one 
is trivial), we make use of that phenomenological 
expression for the coordinate distribution of two 
protons in a nucleus which is experimentally con­
firmed in the case of dipole transitions. For this 
purpose, the first step of this work consists in re­
considering two known sum rules which correspond 
to the cross section for dipole transitions. 

1. DIPOLE TRANSITIONS 

In the present section, we are interested in the 


