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During the transition through resonance, a 2 con­
tains a constant term, an oscillating term and a 
slowly increasing term. The constant term changes 
only the magnitude l 0 , and the oscillating term has 

no effect. As far as the slowly increasing term 
is concerned, when the inequality ot (v- kj M) < 0 
is satisfied, the increase of a2 lead to the situation 

where the ratio (v - k/M + cx.a2)/0 remains constant 
as n decreases. This will lead to particle loss. 

For this not to happen, it is obviously sufficient 
that the following inequality be satisfied. 

ndQjd6 ~(X (da2/d6)max. 
where (da 2 /dB) has to be taken in a region of 

max 
monotonic increase of a, according to (27). In 
this region, 

dC ~ dS _ .!!§__ du ~O ? _1_ (Eo dTjdN)'i• 
d6 .~ d6 - du dO .~ • 21t MT • 

Therefore 

(da2) 2 2 ( E1 ) ( MT )'I• 
a (ffJ,max=3.6r::ahJn n E2 'hdTjdN . 

And we finally get the safety factor condition 

150ah2J~ (n ~ \( ~I_')"Iz <:S::: 1 (37) 
E0 ) \s0 dT;dl\' 

or 

a (~r)~a~ (-MT )'lz ~ I (38) 
I cp 12 e:0 dTjdN """ . 

max 

This condition is not difficult to satisfy. It is 
automatically satisfied for the usual specifications 
on Cl 3H/or3 and (!1r) 

max 

1 Hammer, Pidd and Terwilliger, Rev. Sci. Instr. 26, 
555 (1955). 
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N. N. Bogoliubov's method for constructing the scattering matrix is generalized to 
the case of a theory with non-local interaction. For such a theory, a scattering matrix 
is constructed which satisfies the physically necessary requirements. 

1. INTRODUCTION 

A TTEMPTS , having their origin in the "struggle 
with divergences", to avoid the use of point 

interactions in the quantum theory of fields and to 
replace it by an extended interaction, are as old 
as quantum electrodynamics itself. 1- 3 However, 

elaborate investigations of such theories, 4 - 5 un­
dertaken within the framework of the description of 
a many-electron system by means of the many-
time formalism or the Tomonoga-Schwinger equation 
in the interaction representation, have shown that 
the introducti<¥1 of a form factor violates the con­
ditions for solvability of the equations of motion, 
since the Hamiltonians at points with space-like 

48 

separation no longer commute. Consequently, the 
non-loc~l theory is incompatible wjth the Hamil­

tonian method. The physical reason for this is that 
the introduction of a form factor actually results 
in propagation of signals (at least, in the small) 
with super-light velocity. Thus the requirement 
that there exist a wave function describing the 
state of the system at a definite time loses its 
meaning. 

In the hope of avoiding the difficulties of the 
Hamiltonian method, attempts have been made to 
go directly to the Euler-Lagrange integro-differ­
ential equations which follow from the variational 
principle with non-local interaction. 6 In quan­
tum theory this procedure leads to the considera-
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tion of the equation of motion of the field opera­
tors in the Heisenberg representation. More re­
cently, there has been undertaken a further devel­
opment of one of the variants of such a theory7-8' 
which is characterized by the action function for 
the interaction: 

S;nt= ~ dx' dx" dx"' A (x', x", x'") 

with the "Lagrangian" 

A(~)= A (x', x", x"') 

(l) 

(2) 

= gF (x', x", x"')'f (x') u (x") ·;; (x"'), 

where ;j1, tjJ and u are the Heisenberg operators of 
Dirac and scalar fields, F (x ', x ", x '") is the 
form factor, and ,; denotes the triplet of points x '. 
x" and x"' (in the sequel d,; will denote the pro­
duct dx 'dx "dx "}. 

However, more detailed investigation9 - 11 has 
shown that Bloch's proof8 of the unitary of the 
S-matrix is incorrect, and that with this method 
for constructing a non-local theory one obtains 
(except, possibly, for a very restricted class of 
special Lagrangians) a non-unitary S-matrix, 
which is physically inadmissible. One may sur­
mise that the difficulties with unitarity which oc­
cur in the Heisenberg representation are a direct 
consequence of the failure to satisfy the conditions 
for solvability of the Tomonaga- Schwinger equa­
tion in the interaction representation. 

This idea prompts one to introduce the non-local 
interaction not into the theory of the equation of 
motion, but rather into the theory of the S-matrix, 
whose framework is much broader, and in which 
the formulation of the problem is more natural 
for a non-local theory. The present paper is de­
voted to the generalization to a non-local theory 
of Bogoliuhov's method. 12 • 13 *where it will he 
convenient to use the form of the theory pre­
sented in Ref. 14. ** The starting point for the 
construction will he the physically obvious require­
ments I,A-D which are imposed on the S-matrix. 

As in the local case, in order to give an ex­
plicit description of the operation of switching on 
and switching off the interaction, we replace (cf. 
B. S. and I) the actual Lagrangian (2.)*** by 

*Cited as B.S. in the sequeL. We shall use the nota­
tion of this and the next paper. 

**The starting point for the construction will be the 
physically obvious. 

***For purposes of concreteness, we shall consider 
the non-local theory with Lagrangian (2). However, all 
the results will, of course, be valid in a theory with 
any Lagrangian of similar type. 

g (,;) A (,;)where g (,;) here is a function of the 
three space-time points x ' , x" and x '". The 

full switching on of the interaction over all space 
will, of course, correspond to g (,;) = l. The ex­
pansion of S (g) in series can he written in the 
form: 

s (g)= 1 (3) 

00 1 

+ ~ -r;! ~ Sn (~1• · · · ' ~n) g (~I) · · · g (~n) d~l ... d~ 11 • 
n=I 

It is clear that the conditions of correspondence 
to classical theqry and relativistic invariance 
(B.S. 3.17 and 4.4) are taken over into the non­
local theory with practically no change: 

(4) 

(In thelast formula, L,; in an obvious way denotes 
the aggregate of the three points L x ' , Lx "and 
Lx '".) No new points come up in the formulation 
of the condition of unitarity; one can immediately 
write: 

11-l 

+ ~ P (~1• · · · • ~k / ~h+l• • • • • ~n) 
k=l 

The situation is different for the causality con­
dition. Formally it is impossible in a non-local 
theory to satisfy the causality condition in its 
classical sense, because of the very basic physi­
cal ideas--the presence of a form factor will al­
ways lead to propagation of the interaction, at least 
in the small, with a velocity greater than the ve­
locity of light. Physically, this is not inadmissi­
ble since, 15 so long as such violations are limited 
to regions of the order of "elementary lengths", 
they will he unobservable in a reasonable theory, 
and will mean only that the "mathematical" points 
x ' ... which serve as variables of integration 
do not signify physical points. 

In fact, the introduction of a form factor in the 
interaction Lagrangian (2) means physically that 
we drop the usual picture of point elementary par­
ticles, and go over to a picture of extended ele­
mentary particles which are, so to speak, smeared 
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out in space and time. But as soon as we drop the 
notion of point elementary particles, we are left 
without any way of assigning a physical meaning 
to the assertion: "sometlring happens at a definite 
space-time point " , imd all physical quantities 
and concepts must now refer, not to points, hut 
to (small) space-time regions. The use of "points" 
x ' ... is only as a mathematical tool, and it 
would he altogether unnatural to require the ful­
fillment of any physical conditions with regard to 
them, such as, for example, that there he no propa­

gation of the interaction from the point x to point 
y if y does not occur later than x. 

It is obvious that, in place of such requirements 
of formal causality, in a non-local theory we 

should impose requirements which result in satis­
fying the principle of causality for macroscopic 
distances (compared to the "elementary length" 
when it has a real physical meaning. The condi­
tions which must he imposed on form factors, in 
order to restrict to macroscopic distances the 
breakdown of strict causality in expressions where 
F (,;) appears once, have been analyzed in detail 

recently; 16 as a result of this analysis, a set of 
sufficient conditions were found, which we shall 
assume to he satisfied. 

g 1 (E)~O, only it simultaneously 
g2(~)=fc 0, only if simultaneously 

With such a definition, the principle of causality 
will re~uire that, despite the presence of the form 

factor F (g), the interaction g 2 <() A (,;) shall 

act on the system as if the interaction g 1 ( () A{,;) 

were not present, while the effect of the interaction 
g 1 (() A (,;) shall not depend on the specific 

nature of the interaction g (,;)A (,;) , but only 
2 

on the state of the system which develops as are-

sult of the latter's action. In fact, what we want 
is that formally "acausal" interactions be assoc­
iated only with triples of points x ', x ", x ,, 
appearing in the argument of a single form factor, 
i.e., referring to the same "point" (, while the 
possibility of meeting pairs of such points in the 
arguments of different functions g 1 (,;) and g 2 (,;) 

is precisly what is excluded by the conditions (7) 
and G 1 ~ G 2 • 

Considerations which are completely analogous 
to those used in the derivation of condition (6) of 
Reference I give, as the mathematical expression 

However, in the expressions for the operator 
functions S n in the scattering matrix, the form 

factor F (,;)will occur repeatedly. Therefore the 
criteria found in Ref. 16 are not enough, and we 
must now, dropping the strict causality condition 
1-2, formulate a weakened condition which should 
eliminate the possibility of adding to the break­
down of formal causality, due to the presence of 
the form factor, new violations caused by unsatis­
factory construction of the S-matrix. Such a con­
dition is found in a natural way if we try to gener­
alize theintegral causality condition formulated 
in I to the case of the non-local interaction (1). 

2. THE CONDITION OF ALMOST-CAUSALITY 

Again, as in I, let us consider two regions, G 1 

and G 2 , situated so that G 1 2:. G 2 and generalize 

the definition of classes of functions g (x) and 
1 

g 2 (x), introduced in 1-3, to the case where each 

of the functions depends, not on one, but on three 
points x ', x ", x ,, . We shall define these class­

es in the strictest sense, namely we shall require 
that: 

X/ EG1 , X/' EG1andx1'" EG1 , 

X2'EG2 , X2"tG2andx2"'tG2 • 

of this requirement, the condition 

{7) 

(8) 

which we shall name the condition of almost­
causality, in order to distinguish it from the strict 
causality conditions which occur in the local the­
ory. It satisfies the principle of correspondence 
to local theory in an obvious fashion - when we 
make the limiting transition 

F (x', x", x'") -> a (x'- x") X a (x"-- x'") 

it becomes the integral causality condition 1-6 of 
the local theory. 

The faet that the condition of almost-causality 
is weaker than the integral causality condition 
1-6 manifests itself graphically in the fact that 
it is impossible to go over from it to a differential 
formulation analogous to 1-2. Actually, there is 
no difficulty in deriving , from equation{8), a con­
dition analogous to condition 1-9 for a class of 
functions analogous to the special class 1-8. How­
ever' in the non-local theory it turns out that it 
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is not possible to approximate an arbitrary function 
g (.;} by functions of this special das'3, since for 
this purpose we would require the regions G 1 

and G 2 to not merely touch, but rather to inter-

penetrate. 
In order now to translate condition(8) into the 

language of the operator functions S n (~ 1 .•. ~ n ) 

we must, as in the derivation of 1-7 use for 
S (g 1 ), S(g 2) and S (g 1 + g 2 ) the expansions 

(3). After exactly the same algebraic transfor­
mations, we arrive at the condition: * 

(9a) 

if gu · .. , ~z} ?7- fz+I, · · ·, ~n}· (9b) 

Thus the condition of almost-causality (8) leads, 
in the same way as the integral causality condition 
1-6 , to a multiplicative representation for the 

operator functions S of separable (cf. I) aggre-
n 

gates of arguments (~ 1 • •• , ~n ).* We now pro-

ceed to investigate the compatibility of this con­
dition with the other conditions, lA-C, which are 
imposed on the S-matrix. 

3. COMPATIBILITY OF CONDITIONS IMPOSED 
ON THE SCATTERING MATRIX 

We note first that if the set of variables { ~ 1 ••• , 

~n } splits into a sum of two space-like aggregates 

{~1 •.• , ~l } and { ~l+l •.• , ~n} , then, as in the 

means that ' ,, "' ' " , {x1 , x11 xl' ... ,x1, x 1, x 1 } 

if {x~+I, ... , x~}. 
One shoul~ also keep in mind the remark ( cf, I, footnote 
3) concernmg the order of enumeration of thevariables. 

*We note that for separability of the aggregate 

{~1• ... ' ~n} 

it is not sufficient t.P have the aggregate 
1 If f,, I ff If! 

{xl' xl, xl' ... ' xn, xn, xn} 
be separable, i.e., to have at least one cut through it; 
it is neccesary , in addition, that this cut, not, go,. 
through any one of the sets of points {xi' Xi' Xi}, 
referring to the same composite "point" ~i. 

local case, we obtain from (9) the requirement of 
commutability of the operator functions of the space­
like sets of arguments: 

(10) 

==Sn-z(~l+l• .... ~n)Sz(~l• · · ·' ~z), 

if {~1' · · · ' (,l} ~ {~Z+l' · · · ' ~n}· 

Like the corresponding condition 1-10 of the local 
theory, (10) will be fulfilled automatically if the 
elementary commutators (anticommutators) of the 
free field operators vanish for space -like inter­
vals. The fact that (10) cannot be satisfied, if the 
elementary commutators differ from zero, even if 
only for extremely small space-like intervals, is 
apparent from the fact that (10) must , in particular, 
be valid when all the arguments in each set 
{ ~1 ... , ~l}and {~ ... , ~ } coincide. 

l +1 n 

The situation which we have just described can be 
regarded as the mathematical formulation of the 
fact that we are dealing with a field theory with 
non-local interaction: the commutators of free 
fields must vanish outside the light cone; in this 
sense we may say that we are dealing with a theory 
in which the free fields have local character. 
Therefore condition (10) also has the significance 
of a condition on the local nature of the theory of 
the free fields (here we ha,.ve in mind the fact that 

the fields must appear in the Lagrangian as a 
whole, without being split into positive and negative 
frequency parts). 

In I the theorem was proved that, if in a local 
theory the set of arguments of the operator function 
sn separates in several ways, the representations 

of S which, by virtue of 1-7, result from these 
n r 

splittings will differfrom one another only by a 
transposition of functions Sv , Sv, of space-like 

sets of arguments. It is easy to see that the proof 
of this theorem carries over verbatim to the non­
local theory, so that it remains valid there. Since, 
by virtue of (10), operator functions of space -like 
sets of arguments also coJP.m ute in the non-local 
theory, the compatibility of there quire me nts im­
posed on each sn by the condition of almost-caus-

ality is proven if this condition can be applied re­
peatedly. 

The situation is similar for the theorems con­
cerning unitarity which were demonstrated in I. 
In fact, their proofs were based entirely on certain 
algebraic relations for which the nature of the sym­
bols x 1 .•• , xn or ~1 ••. , ~n was completely 
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irrelevant; it was required only that the separation 
I-7 a follow from the relation I-7b, and this rerr, ains 
true when we replace all the xi by ~. , because of 

' (9). 
Thus if the set of arguments { ~1 • • • , ~n } 

of the operator function S n is separable (only in 

this case is the condition of almost-causality ap­
plicable to sn ), and if the unitarity-condition is 
satisfied for S 1 ••• S for arbitrary values of 

n-1 
the arguments, then the representation (9) for sn 
which results from the condition of almost-causality 
will automatically satisfy the unitarity condition. 
So the compatibility of conditions D and C for the 
S-matrix is demonstrated. 

Since the mutual compatiblity of the remaining 
conditions imposed on sn is obvious from the san,e 

considerations as in the local theory, all four cond­
itions A-D imposed by us on the S-matrix are 
consistent with one another. 

From this it follows immediately that we can al­
ways find a sequence of operator functions S 1 •• • S n 

all of whose terms will satisfy conditions A-D. 
In fact, let us assume that the operator functions 

S ... S have been constructed. We shall show 
1 n 

that we can always construct an sn +1 which, to-

gether with the already constructed 51 .. . sn will 

satisfy all the conditions A-D. The manifold of all 
possible values of the arguments ~1 ... ~n +1 

of the operator functions sn +7 separates into two 

classes: arguments forming an inseparable set, and 
arguments forming a separable set. 

If a certain set of arguments belongs to the se­
cond class, then from the condition of almost­
causality the corresponding value of sn +1 will he 

represented as a product of already known opera-
tor functions of lower index, so that according to our 
earlier remarks all the conditions A-D will he 
satisfied. 

If a certain set of arguments he longs to the first 
class, then the condition of almost-causality in 
general imposes no limitations on the correspond­
ing value of the operator function. As we see from 
(6), the unitarity condition uniquely determines 
the Hermitean part of S in terms of the already 

n +1 

known S 1 • •• S n • The anti-Hermite an part of 

sn +1 remains arbitrary. 

So if we are given operator functions 51 ••• Sn 

satisfying A-D, we can always construct an 
operator function sn +1 which together with them 
satisfies the same conditions. On the basis of the 

principle of complete induction, we then arrive 
at the possibility of constructing a sequence of 
operator functions s 1 •••• sn ... satisfying all the 

requirements A-D, i.e., we get the theorem of the 
existence of the scattering matrix (cf. Ref. 6 in I). 

4. THE CONSTRUCTION OF THE OPERATOR 
FUNCTIONS OF THE S-MATRIX 

In order to formulate the method of successive 
construction of the operator functions of the S-matrix 
and to get compact and symmetrical expressions 
which appear in it, we shall investigate the struct­
ure of the operator functions sn (~1 ... , ~n ) in 

more detail . Fron1 the theorem of the complete 
separability of separable aggregates, which was 
proven in I, it follows that, for any combination 
of arguments of the functionS, the points ~1 • • .,~n 
can always he divided into m ( l :S. m :S. n)groups 

{ ~A · · · ' ~A } ; · · · ; { ~A 
i 1/1 Vi+ .•• +vm-1+1 

~A } , which are separated from one another, while 
m 

the group of points in each set are inseparable. In 
the local theory, this separation led to a division 
into m groups of points, such that the points within 
each group coincided, while the points in different 
groups were distinct. Since we here want to main­
tain the analogy with this formulation, we shall 
say that the v points ~A ... , ~A of one inse-

1 1/ 

parable ~oup "coalesce" and form a composite 
pointE v , consisting not of three, hut of 3v ordi-

ary points x ;.. . .... , x '>._' . 
' 1/ 

Here we introduce the concept of an almost-local 
operator. We shall say that the operator expres­
sion N (,;A .•. , ~A ), depending on the field op-

v i 1/ 

erators at the "points" ~A ..• , ~A , is an 
1 v 

almost-local operator if 

(ll) 

for an arbitrary separable set of arguments, and if 
the conditions of relativistic invariance, (5) and 
(10), are satisfied for N • It is clear that the almost-

!/ 

local operator is a direct generalization of the con­
cept of quasi-local operator, introduced inB. S.; in 
fact, in a local theory the set of arguments x1 •• • xv 

can, as already mentioned, he inseparable if and 
only if ali the points x 1 ..• , xv coincide. 

Comparing the definition of almost-local opera-
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tor with the definition of a composite point, we 
see that the set of arguments of an almost-local 
operator always forms a composite point E v ; we 
may threfore say that each almost-local operator 
will depend, not on several composite points (of 
third order) (:, but on one composite point Ev. 

= { (A, · · · , (A, of ocder 3v. Since the composite 
1 j.) 

points (:, consisting of triplets of ordinary points 
(so that they are composite points of third order) 
are in no way physically distinguished from com­
posite points of n'th order, the Lagrangian A((:), 
"depending only on a single point" (:, loses its 

special position among almost-local operators. 
Using the concept of a composite point, we may 

say that then argumentS I of Sn always break Up 

(uniquely) into m (1 'S_ m 'S.. n) mutually separated 

composite points Ev1 ... , Evm (v1 + · · · -fv = n). 
1 m m 

From the theorem demonstrated in I, concerning the 
possibility of representing a sum of inseparable 
sets as an ordered sequence, it will now follow 

h h " . " _v 1 ,_v m l t at t e pomts :=. 1 ••• , :=. m can a ways 

(not in general, uniquely) be ordered in time, main­
taining the relation (cf. Ref. 6 inl): 

(12) 

Now applying the condition (9) of almost-caus­
ality to each of the sections occurring in(12), we 
get for sn the representation 

(13) 

similar to the representation 1-25 of the local 
theory. If the "points" Evi ... , E v m can also 

1 m 

be ordered in some other way, we obtain for S 
n 

a representation differing inform from (13). How­
ever, because of the uniqueness of. the resolution 
of a separable aggregate into a sum of inseparable 
aggregates, and the self-consistency of the condi­
tion of almost-causality, it can differ from (13) 
only by transpositions of commuting S v, 's of 

space-like separated pairs of "points" Et , -
consequently all such representations will be equi­
valent; they can threfore be combined into the sym­
metric expression: 

(14a) 

= T [Sv, (31v1 ) ••• S.. (-=nv1m)] 
'Ill ~ . , 

if 

_vm. 
... +::!.m' (l4b) 

Here it is implied that the T-ordering applies only 
between "points" E_v1 while the operator func-

' tions of individual "points " enter as a whole in 
(14). As a consequence of the theorems concern­
ing separation and ocdering of aggregates, which 
we have just quoted, the meaning of the T -products 
which occur in (l4a) is completely obvious and 
unique: the expression (14) simply denotes the 
representation (13) for all possible orderings (12) 
with the separation {l4b); in addition, it shows 
explicitly the symmetry of sn with respect to all 

its arguments. 
Formula (14) reduces the problem of determining 

sn for arbitrary sets of arguments to the determina-

tion of the operator functions S for theindivid ual 
j.) 

arguments 2v which are composite "points", i.e., 
for the inseparable sets { (: 1 ••• , (:v } . 

We have already noted that the condition of 
almost-causality in general imposes no limitations 
on the value of sj.) for such arguments, that theuni-

tarity condition uniquely determines the Hermitean 
part of such sj.) in terms of the operator functions 

sl ... SV-1 of lower index, while the anti-Her­

mitean part of such Sv remains arbitrary [of course, 

within the limitations of the requirements arising 
from the conditions of relativistic invariance (5) and 
(10) J . Since these quantities can be regarded as 
almost-local operators, 

(15) 

'"" (Mv and r v are Hermite an), we may say that 

(14) completely (and uniquely) determines all the 
operator functions S 1 ((:) •.. , S n ((: 1 .. · (:n ) in 

terms of the sequence of Hermitean almost-local 
operators 

(16) 

which are assigned completely arbitrarily, and to-
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gether determine the physical system whose theory 
is being constructed. Thus the problem of con­
struction of the S-matrix in the non-local theory is 
solved in principle. 

The representation (14) for S has, however, an 
n 

essential defect from the yractical point of view: it 
does not give a single expression for the operator 
function S ((1 ... , ( ) for all values of its n n 

arguments--for combinations (z ... ' en ' in which 

the points (are coupled differently, (14) gives for 
sn different expressions, which do not automatically 

go over into one another. Thus, for example, accord­
ing to (14), we must use for S 2 the expression 

T IS 1 ((1 ) S 1 (,; 2 ) ] , if ( 1 and ( 2 are unconnected, 

and the expression N";, ((1,(2 ) if they are connected. 

In order to eliminate this defect, we must, ob­
viously, represent the value of S for a coupled set 

n 

of arguments as a sum of expressions which con­
tinuously extend its meaning for uncoupled arguments 
plus some additional term which automatically van­
ishes if the arguments are uncoupled. To do this 
we must first extend continuously the definition 
of the T -product, which so far exists only for 
T -products of functions of uncoupled points E 1 , 

... E k , to the case where the points are coupled, 
when the T -product in its usual intuitive sense does 
not exist, and we must take refuge in additional 
arbitrary conventional definitions. 

One possible convention is the definition of the 
T -product according to Wick's theorem as the sum 
of all possible normal products with all possible 
chronological contractions. It is easy to see that 
this definition is equivalent; to the independent 
time ordering of the individual free field operators 
appearing in the operator function. In the local 
theory (cf. I) this definition was a completely 
natural one, since it led (for suitable choice of the 
regularization ) to the automatic fulfillment of the 
unitarity condition when the points were coupled. 
It is easy to see by direct computation that this 
way of extending the definition of the T -pr'oduct in 
the non-local theory leads to violation of unitari­
ty. 

Another possibility would be a definition of the 
T -product which would not lead to a violation of 
unitarity for coupled points. Such a definition 
would be preferable from thepoint of view of the 
general theory, but it would be much less conven­
ient for calculation, since there would clearly be 
no analog of Wick's theorem. 

We shall therefore assume that we have a de-. 
finition of the T -product for coupled points whieh 

does not necessarily achieve unitarity, and split 
up thevalue of sn for completely uncoupled argu-

ments t 1 • . . , ( into a s urn 
·' n 

of quantities snT ' consisting of a sum ofT -pro­

ducts of operator functions with a smaller number 
of arguments, extended in accordance with some 
chosen convention, and the almost-local operator 

Nn (3") = Mn (~") !-. i.J:, (.=:n) 

(M and [' are Hermitean). The operator Mn will 

again be uniquely determined via the unitarity cond­
ition in terms of the operator functions S k of 

lower index, while its form will of course depend on 
the way the T -product definition is extended (in 
particular, if the second method suggested above is 
used, it will he zero). 

Substituting the resolution (17) in (14) and making 
some combinational transformations, we get an ex­
pression for sn (( 1 ••• ' .; n ) as a sum 

(18) 

N ('::' ''m)] · vm .-m, , 

in which it is assumed that the summation is ex­
tended over all possible separation of the set 
{ t: t: . f " . " -v s 1 •.• , s n } mto a sum o pomts ::::. 11 , 

... , Ev m , where the points E, consisting of dif-
m 

ferent points (, are assumed to he different, while 
the order of the points E in the entries N v ... N v 

1 m 

is irrelevant.* 
The summation in (18) is carried out first over 

the number m of points Ei ; second, over all pos-

sible distributions of the vi variables (in each 

point E~i , and third, over all possible assignments 

of the v~riahles .; 1 ••. en among the m groups with 

v 1 •• .• vm in each group. We can therefore write 

the expression in more detail in the form 

*We emphasize once more that the almost-local opera­
tors Nv. are assumed to enter into the T -product as a 
~hole; fhe T-ordering is done only between different 
t::.i , and not inside them. 
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(19) 

The factor l/m! appears here because each speci­
fic subdivision occurs m ! times in the sum (19), 
differing only in an irrelevant order of arran grn ent 
of the factors under the sign of the T -product. 

Formulas (18) or (19) give us the desired repre­
sentation of the operator functions sn (~ l ... ' ~n ) 
valid for any values of the arguments. They ex­

press sn in terms of the sequence of almost-local 

operators 

N1 (~) = iA (~), (20) 

in each of which the Hermitean part M n is uniquely 
determined by the functions sk (i.e., in the last 
analysis, by the operators N k )of lower index, 

while the anti-Herrnitean part i [' remains arbi-
n 

trary and must be given in the formulation of the 
theory. Formula (19) is completely analogous in 
structure to the expression 1-30 of the local theory. 

Combinatorial transformations, which are the 
same as those used in the local theory (cf. B.S. 
4.30-4.34) ebable us to convert the expansion 
(3) with the operators functions (19) to the concise 
formula: 

S (g) = T ( exp {~ N (:;;g) g (~)de;}) (21) 

= T (~xp { i ~A(~; g) g (~) d~ + ~ M (~;g) g (~) d; }) , 

if we define the almost-local Hermitean function­
als M (~;g) and M (~;g) by the expansions: 

ro (22) 
, A ") ~ 1 \ r ('- " ,. ) . (" ). A(.;; g·)= (~ + LJ VT) .t, ~•'1· · · ·, ,,_1 g '1 

'J.o.-2 

(23) 

The functional A (~; 1) can now be regarded as 
the total lagrangian of the system. Its individual 
terms, which are determined by the almost-local 
operators 

A(~) = ['1 (21_), [' ( -·•· n ~ -=.-), · · ·' ln(2 ), ... , 

differ from one another only in the manner of turn­
ing on the interaction" (cf. the discussion in B. S. 
at the end of Section 4), which we are free to 
choose, and differ also in the number of simple 
points x ... which are contained in a single com­
posite point E. Therefore there is no basic physi­
cal distinction between them, so that combining 
them in the total Lagrangian A (E; 1), which must 
be given in order to characterize the physical sys­
tem, is entirely natural. 

The functional M (~;g), on the other hand, has no 
direct physical relation to the system under consi­
deration. Its appearance is due to the arbitrari­
ness discussed above in the definition of the con­
tinuation of T -products into the domain of coupled 
arguments: if we use a definition which does not 
maintain unitarity, for coupled arguments then we 
must correct things by adding to the Lagrangian the 
"anti-Herrnitean added term"- i M (~;g). 

It should be emphasized that in order to construct 
the S-matrix according to formula (21), we must 
first of all give some definite method for extending 
the definition of the T -product into the domain of 
coupled arguments. As soon as such a definition 
is made, we can assign a definite total Lagrangian 
A (~; l). The functional M (~; 1) is then uniquely 
determined from the condition of unitarity, * so 
that (21) gives us the value of the S-matrix. If 
we now shift from this definition of the T -product 
to some other, then to get the same S-matrix we 
must change the form not only of the functional 
M(~; 1) but also of the functional A(~; 1). Thus 
the total Lagrangian A(~; l) determines the 5-
matrix uniquely only with respect to a fixed method 
of defining the T -product in the region of coupled 
arguments . 

. *In practise, the functional M (~; l) can only be deter­
mmed by successive use of the unitarity requirement 
in order to find the almost-local operators M2 ••• M ••• 

n, 
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Such a situation is completely analogous to that 
which occurs in the local theory; there, too, the 
form of the total Lagrangian L (x; 1) determines the 
S-matrix only with respect to some given fixed • 
method of regularization; in order to get the same 
S-matrix with different methods of regularization 
requires the use of different total Lagrangians 
L (x; 1). ** 

5. DISCUSSION 

The fundamental result obtained above is theproof 
that, by generalizing the method of Bogoliubov and 
Stueckelberg to the non-local theory, one can con­
struct foc any Lagrangian an S-matrix satisfying 
the physically obvious conditions A-D. We have 
succeeded in overcoming the difficulty with the 
unitarity of the S-matrix which ·arises in construct­
ing the theory in the Heisenberg representation. 

Physically, this progress proved possible, 
apparently, because of the more consistent appli­
cation of the non-local point of view. In fact, 
the introduction of a form factor means in descriptive 
terms the assignment to the elementary particles of a 
certain internal structure. Since we avoid defining 
it, and regard the form factor as something put 

into the theory from outside, this means that we 
avoid. -.at least at this stage of the theory, the 
study of the laws which govern the internal struct­
ure of elementary particles, and regard it as given; 
all our equations refer essentially only to pro­
cesses in which the internal structure of the parti­
cles does not change. 

Dut from this point of view it appears unnatural 
to require of the equations of the theory that they 
answer the question: what happens if, roughly 
speaking, the particles "penetrate on another"; to 
this there corresponds mathematically not only the 
attachment of several points x' ... to one point 
~.but also the case of coupling of arguments. This 
information must he put into the theory from outside, 
just as is done for the form factor and the "funda­
mental Lagrangian A(~), in such a way, of course, 

**Wenote that the entire procedure developed for 
constructing the non-local S-matrix suggests the idea 
that the coupling of arguments in the non-local theo" 
can be regarded as an unusual method for evaluating 
the indeterminate forms which occur for coupled (coin­
cident )arguments in the local theory, which is usually 
accomplished by means of regularization• Obviously, 
therefore, one could arrive at the non-local theory 

from a "formalistic" point of view, not attributing any 
physical meaning to the non-local character, but re­
garding it merely as a method of regularization before 
making the limiting transition to the local theory. It is 
not out of the question that such a method of regulari­
zation might be of some interest, in view of its close 
connection with the spuce-time description. 

that it does not come into conflict with the latter. 
The method of solution of the equation in Heisen­

berg representation 7 • 8 taking the form factor and 
the quantity A (~ as given, assigned a completely 
definite meaning to the operator functions of the 
S-matrix for coupled arguments, while starting 
coupled "points" ~· Thus, from our point of view, 
this method gave a mocedetailed description than 
is admissible for a non-local system, and it was 
just this which gave rise to the difficulty with uni­
tarity. 

In our method for constructing the S-matrix, this 
defect does not occur: to define the theory com­
pletely we require the assignment of the values of 
all the operator functions of the S-matrix (15) for 
completely coupled sets of arguments; then the re­
quirement of mutual compatibility ohhese values 
(the unitarity condition) determines their Hermitean 
parts , while their anti-Hermitean parts (16) must 
he assigned in formulating the theory, and together 
determine the assumed internal structure of the par­
ticles. Such a procedure for constructing the the­
ory, in which in a certain sense we separate the 
"domains of essential non-locality" and the do­
mains of the more or less customary space-time 
description (cf. Reference 17), naturally follows 
from om· condition of almost- causlity. 

The ''total Lagrangian" (22) is the operator which 
in our case defines the theory. This may serve as an 
argument in support of the position that, in a con­
sistent non-local theory, we must not limit our­
selves to the consideration, of non-local interactions 
of just one specific kind, such as (1), (2), but must 
consider general non-local interactions, expressed 
in terms of Lagrangians which are general function-

als of the field operators, like the Lagrangian (22). 
Since, in addition, one may hope that the introduc­
tion of a form factor will make it possible to avoid 
divergences, in such a non-local theory the de­
marcation between renocmalizable and unrenorm al­
izable theories is erased. 

In conclusion, we should like to point out that 
the theory we have constructed should not neces­
sarily be regarded as complete. Here we have in 
mind that the possibility is not excluded of estab­
lishing some additional limitations on the choice of 
the set of almJ.t~local operators r (En ), start-

n 
ing from some additional physical requirements. 
Here we are thinking of gauge invariance condi­
tions, which in the light of recently obtained re­
sults 18 requires further serious investigation, and 
also of conditions of the type of the "reality con­
dition." 19 We shall not enter into a discussion of 
these questions here. 
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