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The occurren?e of resonances between the synchrotron oscillations of the momentum 
p and the amphtude beats near resonance on magnetic field perturbations is demon­
strated. Resonances occur if the ratio between the beat frequency (for tl.p/p = O) and 
the frequency of synchrotron oscillations is an integer. Transitions through these res­
onances are examined in the linear and non-linear approximations. 

EQUATIONS OF MOTION AND RESONANCES 

L ET us examine the simultaneous effect of the 
perturbation of the magnetic field and of the 

betatron frequency, due to the synchrotron oscilla­
tions of the momentum. The simultaneous effect 
of a parametric resonance is not important here. 
Let us consider, for example, the radial oscilla­
tions. The initial equations have the form 

d2r _ (--l-)2 8Hj8r r (l) 
d~2 2n ~ 

wherel/p 0 == e/cp0 = l/ p0 ; p0 is the radius of 

the unperturbed closed orbit; l is the length of 
the periodic sector; e == (2rr/l)s; s is the coordi­
nate along the unperturbed closed orbit. The small 
synchrotron oscillations of the momentum are de­
scribed by the term tl.p/p. The gradient of the mag­

netic field oH ofor has a period of 2rr. 
The general solution of the unperturbed equation 

(tl.p/p = tl.H = 0) has the form 

r = a?• +a*?, tf (B)= f (B) exp (i;J), (2) 

f (6) = f. (B + 2r:) 

(cpis the Floquet function and v the known beta­
tron quasi-frequency). As usually, we seek a solu­
tion of Eq. (l) in the form 

(3) 

For x we have the equation 

~: + ivx = -i (-2l )2 _!_ f (B) 8H!8r (xf" + x*f) 0!_ 
v n w P 0 p 

- i (-l )2 _1 t (0) ~!!. 
2n w H' (4) 

W = i (!!;'!> 0
'- q;,*w') 

I i j T • 
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In the linear approximation, 

8,.pjp = (D.pjp)max sin no, (5) 

where n is the synchrotron frequency in appro­
priate units. 

Equation (4) can be solved in the usual way, by 
finding the general solution for tl.H = 0 and then 
the solution of the complete equation (4). If 
f 1 << 20, then 

(6) 
27! 

X r_z )2 l" I , I 2 aH ;ar dO 
\ 2n .) f P 0 ' 

0 

and the solution for tl.H = 0 has the form 

Xo = Ae-ive (I + 2 ~ -1- ( iel)\ k cos k ne \i (7) 
k k! 2!1 j. 

This solution can be obtained by expanding all 
the terms of the right hand side of (4) in Fourier 
series. In the expansion (7), we are interested 
in k"' 3-5. For such k's the following strong 

equality is true. 

(8) 

Hence the only term which contributes aplJreciably 
to the right hand side of (4) is 

- i (_l_-')2 -~-<I q;> /2 aH;ar > !1p x 
2n w • P0 p 

(9) 
= - is1 (sin !26) x. 

The remaining linear terms are small corrections 
for x 0 aad have, furthermore, such frequencies 
which are of no interest. 

For f/20 > 1 the expansion (7) is not adequate. 
rv 

Let us note, however, that 0 being small, we can 
speak of an "instantaneous" frequency 

'lo ='I+ 81 Sin QQ. 
(10) 

Formula (10) is obtained in correspondence with 
'(4) and (9). Instead of (7) we get 
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e 27!M 

x0 =A exp {- i ~ v6d0} 
0 

(ll) X ~ f (0) l:l: exp (ikOjM) dfJ1 e-ik6JM. 

=Aexp{-i'IO+i ~ (cosnO-I)}. 

It is easy to see that (7) is a Fourier expansion 
of the function 

exp [- ivfJ + i (sifn) (cos Q.()- I)] 

for ( /20 << l. Hence (ll) is the general solution 
of (4) for 11H = 0. 

Let us note that, according to (7) and (11), we 
can speak of an approximate Floquet function for 
Eq. (4), namely: 

<P (0) = F (fJ) exp (ivfJ), 
(12) 

F (fJ) = F (0 + 't) 
= f (0) exp {i(sifn) (cos !16- I)}, 

<P (fJ) = 9 (0) exp {(isJ!n) (cos no- 1)}, (13) 

where Tis the period of the synchrotron oscilla­
tions. 

We seek the solution of the complete equation 
(4) in the form 

x = a<P• + a·<P. 

For a we have 
e 

a = const + -!- f (0) ---i ' l )2 ~· !J.H 
wp0\2~ H0 

0 

The frequency v is always chosen within the 
limits 

(14) 

(15) 

k/M -I/2M <v<k/M, (16) 

where k is an integer and M is the number of 
periodic sectors. For v = k/M we have two reso­
nances: the so-called outside resonance (usual 
resonance on magnetic field perturbations) and 
the pararretric one; for v = k/M - 1/2M we have 
only the parametric resonance (resonance on the 
gradient perturbation). 

Let us consider only a single resonant harmonic 
in the integral of Eq. (15): 

I -i(hO•M+ ) [ i ( [ )2 1 ze , Y = --- --- -
wp0 2~ 2~M 

(17) 

then 

0 

a= const 
8 

+ he-iy, ~ exp [i:o/J + ~}-cos no] dO, 
0 

(18) 

(19) 

where ( is the distance to the outside resonance 
for 11p/~ = 0. The integral in (18) describes, for 
E 1 = 0 the amplitude beat of an equilibrium orbit 
with a frequency ( *. For ( 1 f, 0, n-+ 0, (/0 f, n. 
(n is an integer), ~q. (18) describes the change 
of the equilibrium orbit for an adiabatic change 
off 

E "-=Eo+ 81 Sil1 no, 

a = const + (hjz) exp (izO + i'[~). 
Resonances occur when the equalities f =nO 
are satisfied 1 • According to (18), 

I· 

a= const + ::-- exp (isO + ir 2) 

_j_ fihJ (-=-t_) e--iy, , , 1l n . 

2. TRANSITION THROUGH RESONANCES 
IN THE LINEAR APPROXIMATION 

(20) 

(21) 

As it is known, n changes in time. In a slow 

transition through a resonance, the main contri­
bution to the integral 

t-~ QO 

~ -A- ex p ( i -If t + i -R cos t) dt 
0 

(22) 

comes from the variation of the coefficient f 0 /G 
in the exponential. The resonance being very 
sharp, the variation of n does not practically 
affect the factor (1/n)exp lif/n)cos tl; the 
variation of f 0 /0, is, however, quite appreciable 
because the resonance occurs only if f 0 /0 is an 
integer. 

Writing f/0 in the form 

In n df.l 
Eo = ll --- [l 1Ji (t- to), to~ f 

* The sign of f 0 = V- k/M is irrelevant for the 

effect under consideration. We put (O > 0. 

(23~ 
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we must make the usual substitution 
I 

~ t __,. \ ~ll_ dt = ( + !!__ 9_f! t ) t - !!__ t!:_~ ~~ (24) n j n n n dt 0 2n dt 
0 

in the exponent of the integral (22). During a 
single period of synchrotron oscillations, n changes 
only slightly; therefore, 

t 
\ 1 ( ir::0 t iz1 \ 
j If exp 0 + 7f cost) dt (25) 
0 

(~ dD. {, 
t' = n([(ju0 • 

the quantity] n(E"/0) falls off rapidly as n = f/il 
increases. Hence only the transitions through the 
first resonances n = 2, 3, 4, 5 are appreciable. 
In the initial period, the acceleration changes 
according to the law 0"" Q 0p0 jp; hence 

l ndQ I ~.j e0 dTjdN\ p~ 
dfJ .~ 2;rM ~ ' T = Llll ' 

(26) 

where dT /dN is the kinetic increase per revolution. 
Substituting this into (25) we get 

a= canst+ (hje) exp (iz00 + ir) 

+ 2dzln(sifD.)ei13 (C(u)-iS (u)) 

X V MTj(s0dTjdN); 

V fl{jf_f 
ll = ll0 + 0 --

1t dfJ 

O ve0 dTjdN 
= llo + . . !m2MT ' 

where C(u) and S(u) are the Fresnel integrals. 

(27) 

(28) 

According to (14) and (17), the maximum increase 
of rafter the transition through a resonance is 
equal to 

(llr)max = 4.: 191 maxhl n ( ~) 

X (C2 + S2)'1• ( MT ')'I• 
max E 0 dTjdN 

(29) 

~ ~ : hJ (~ ) ( MT ')'I• ~ 4-- lcr:max n Eo n \EodTjdN . 

Assuming a static independence of the perturba­
tions in the various magnets,_we have for V (h2), 

according to (17) 

(30) 

7t 21': 

X v <(~7Y> (I~ 9dt 12 +I~ <pdt n'l·. 
0 1t 

The following approximate equality is usually 
satisfied: 

oH.(IJ)jor =- oH (0 + o:)jor. (31) 

Hence 

e ~ 1 (fJ.p) ( / )2 1 
-I ~ 2:'c p max 21t bp~ (32) 

1t 2T. 

I ~ I cp l2dt - ~ I cp 12 dt 1 ' 
0 1t 

b = HJ(oH(or). 
(33) 

The order of magnitude of fo is 1/8 M -1/4 M. 
Equation (29) can be written in another form. tLet 
us denote by r 0 the amplitude of the equilibrium 

orbit for llp/p = 0: 

(34) 

Then 

(Ar)max ~ 2~ J ( E1 ) ( MT ) 'I• (35) 
~ "80 n 12 --

To \ E0 e0 dTjdN · 

And we have an analogous formula for the vertical 
oscillations. 

3. EFFECT OF NONLINEARITY IN THE 
TRANSITION THROUGH RESONANCES 

The effect of nonlinearity can he taken into 
account by making the substitution 

21t 
IX=+__£____ _1 __ 1_ \ 4 asH 

- t7t2W H oPo ~7t j I cp I drB dO 
0 

(36) 

[a from Eq. (18)]; if the plus sign is taken for r, 
z -oscillations, then the minus sign is taken for 
the z, r-oscillations. This is related to the fact 
that, usually, 
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During the transition through resonance, a 2 con­
tains a constant term, an oscillating term and a 
slowly increasing term. The constant term changes 
only the magnitude l 0 , and the oscillating term has 

no effect. As far as the slowly increasing term 
is concerned, when the inequality ot (v- kj M) < 0 
is satisfied, the increase of a2 lead to the situation 

where the ratio (v - k/M + cx.a2)/0 remains constant 
as n decreases. This will lead to particle loss. 

For this not to happen, it is obviously sufficient 
that the following inequality be satisfied. 

ndQjd6 ~(X (da2/d6)max. 
where (da 2 /dB) has to be taken in a region of 

max 
monotonic increase of a, according to (27). In 
this region, 

dC ~ dS _ .!!§__ du ~O ? _1_ (Eo dTjdN)'i• 
d6 .~ d6 - du dO .~ • 21t MT • 

Therefore 

(da2) 2 2 ( E1 ) ( MT )'I• 
a (ffJ,max=3.6r::ahJn n E2 'hdTjdN . 

And we finally get the safety factor condition 

150ah2J~ (n ~ \( ~I_')"Iz <:S::: 1 (37) 
E0 ) \s0 dT;dl\' 

or 

a (~r)~a~ (-MT )'lz ~ I (38) 
I cp 12 e:0 dTjdN """ . 

max 

This condition is not difficult to satisfy. It is 
automatically satisfied for the usual specifications 
on Cl 3H/or3 and (!1r) 

max 

1 Hammer, Pidd and Terwilliger, Rev. Sci. Instr. 26, 
555 (1955). 

Translated by E. S. Troubetzkoy 
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N. N. Bogoliubov's method for constructing the scattering matrix is generalized to 
the case of a theory with non-local interaction. For such a theory, a scattering matrix 
is constructed which satisfies the physically necessary requirements. 

1. INTRODUCTION 

A TTEMPTS , having their origin in the "struggle 
with divergences", to avoid the use of point 

interactions in the quantum theory of fields and to 
replace it by an extended interaction, are as old 
as quantum electrodynamics itself. 1- 3 However, 

elaborate investigations of such theories, 4 - 5 un­
dertaken within the framework of the description of 
a many-electron system by means of the many-
time formalism or the Tomonoga-Schwinger equation 
in the interaction representation, have shown that 
the introducti<¥1 of a form factor violates the con­
ditions for solvability of the equations of motion, 
since the Hamiltonians at points with space-like 
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separation no longer commute. Consequently, the 
non-loc~l theory is incompatible wjth the Hamil­

tonian method. The physical reason for this is that 
the introduction of a form factor actually results 
in propagation of signals (at least, in the small) 
with super-light velocity. Thus the requirement 
that there exist a wave function describing the 
state of the system at a definite time loses its 
meaning. 

In the hope of avoiding the difficulties of the 
Hamiltonian method, attempts have been made to 
go directly to the Euler-Lagrange integro-differ­
ential equations which follow from the variational 
principle with non-local interaction. 6 In quan­
tum theory this procedure leads to the considera-


