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I N this note the unknown regular solution is re
presented as the sum, Eq. (l), of two solutions 

(regular and irregular) with variable coefficients 
of the unperturbed problem. This representation is 
unique, and simple equations are obtained for the 
coefficients by the application of the well-known 
auxiliary Lagrange condition, Eq. (2) : 

'Pa (r) = ca (r) 'Poa (r) + cb (r) q:>ob (r), (l) 

(2) 

where~ = d /dr. All the functions, including 
c a (r) and c b (r), depend only on the one independ-

ent variable r. The proposed method yields un
known expressions for the energy change in the 
discrete spectrum in a first approximation and for 
the scattering phase change in the continuous spec
trum. The m~thod provides extremelydescriptive 
equations for the change in the wave function it
self due to the perturbation. In thecase of the dis
crete spectrum, moreover, a curious e quation in 

the form of a double integral is obtained for the 
energy change in second order. Let us examine the 
spherically symmetrical problem of the quantum 
mechanics of a single particle; after separating the 
angular variables and introducing cp = r t/J, where 
t/J is the wave function, the proolem for a definite 
value for the momentum l is reduced to an equa
tion having the form 

- (h 2/ 2m)~+ V (r)rp- Erp = (H-E) q> = 0. (3) 

Here V (r) also includes, besides the potential, the 
centrifugal potential /t2l(l+1)j2mr2. 
Equations of second order have two linearly in
dependent solutions. One of them can he selected 

in such a way that when r is small, then Cf!a'"" ,1+1 

(regular solution). The second solution Cf!b be-

haves (for small r) as cpb '"'"' r -l • When E > 0, 
.--=-:-:--~ 

Cf!a and cp b behave (at large r) as cos (ry2mE /1i+a.), 
and it is possible to select a. b = Cf!b + TT/2. Actu-

ally the second solution satisifes the equation 
everywhere, except at r =0. The solution of any 
physical problem is subject to the condition of 
regularity, i.e., it must he composed of regular 
functions of the same type as cpa • 

A problem posed in theperturhation theory is to 
find a cpa type of solution for a potential V (r) 

such that V (r) = V 0 (r) + v (r), where v (r) is 

small and the equation for V 0 ( r) is solved. 

Let us substitute Eq. (l) and (2) in Eq. (3). We 
first examine the case of the continuous spectrum. 

Since all the functions of cp aE , CfbaE , cp obE 

apply to the same value forE, we omit the index 
forE . We hear in mind that c a and c b are 

functions of r. In an elementary way, we obtain 

(4) 

(5) 

lnasm uc h as cp 0 a and cp ob satisfy the same type of 

equation as Eq. (3), D does not depend on r. 
In order to arrive at the regular solution ofthe per

turbation problem we assume c b (0) = 0 and 

(correct to thelast normalization change) c a (0)=1. 

In the first order in v we obtain 
,. 

ca (r) = 1- ~ ~ Vq:>0a rp0b dr; 

0 

(6) 

r 

cb (r) = ~ ~ Vq:>~a dr. 

0 

Equations (4) are exact. In order for succeeding 
approximations to differ only slightly from the 
first approximation, Eq. (6), the well-known condi-
tion (in- dr « 7i 2f2m must he satisfied, the 

smallness of v is not restrictive and the smallness 
of f vr 2 dr is not sufficient. [This condition is 
obtained by requiring that the second term in ex
pression c (r) in Eq. (6) he small ] . 

When r < R, let v = const and let the asymptotic 
expressions cp oa and cp ob still he valid. Then 

we have 
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ca = 1- k1vr2 ; cb = k 2vr21+3; 

cb 'Pob = k3vrl + 3 ~ 'Poa 

for small r, kl' k 2 and k 3are constants. 

In the assumed solution, the function Cf!ob , 

which has an inadmissible singularity at r = 0, 
entered with coefficient c b , which approaches 

zero sufficiently rapidly as r --+0, so that a solution 
of the form of Eq. (l) is valid everywhere, in
cluding the point r = 0, where the correct limiting 
conditions must be imposed on c b (0). 

In the region where v approaches zero, c and a 

c b are constant, and the stucture of the solution 

is vastly simpler than in the conventional per
turbation theory in which the solution of the per
turbation problem for a given E is pre sen ted as 
a sum of regular nonperturbed solutions related to 
all the possible proper values E ', with constant 
(independent of r) coefficients. As is known, 
these coefficients even become infinite (when E' 
approaches E) in the conventional first approxi
mation perturbation theory of the continuous spec
turm. 

In particle scattering theory the cross section and 
phases of scattering may be expressed by the log-
arithmic derivative d ln<pa I dr. Employing 
Eq. (l) and Eq. (2), we find 

In the perturbation theory, when I c b 1 < < 1, 

I l-c a I < < 1 then 

d ln 'Pa _ d ln 'Poa Deb 
dr - dr + rn2 

-rod 

(7) 

This familiar relation is usually obtained by con
sidering S ('Poali'Pa- 'Palio'Poa) dr. 

Let us examine the discrete spectrum. In this 
case we apply, simultaneously with a perturbation 
of the potential V = V 0 + v, a small (constant) per-
turbation to the proper value of energy E = E 0 + ~. 
If in the non-perturbed problem (H 0 _ E 0 ) cp 0 = 0 

then we must consider 

(H-E) <p = (H0 + v- £ 0 - ~) <p = 0. 

In Eq. (4)-(6) let us substitute v- ~ for v. The 
proper function of the non-perturbed problem cp Oa' 

which corresponds to E 0 , is not only regular ~hen 
r = 0 but falls exponentially when r --+ oo. The 
second linearly independent solution for the non
perturbed problem Cf!ob grows exponentially as 

r --+OO • · In order to obtain a proper function in the 
perturbed problem with the correct behavior as 
r --+0 and r --+00, it is necessary that c b (0) = cb (oo) 

= 0. In first order approximation theory we obtain 

00 00 

~ [v (r)- ~] 'Pga dr = ~ [v (r) -~] t)Jg r2dr = 0; 
0 0 

where dw is the volume element. In this fashion we 
obtain the well known equation for the energy change 
to first order, 

(8) 

Substituting Eq. (6), which was obtained to first 
order, in the right component of Eq. (4) we find c b 

to second order. From the condition that c b (00) 

= 0 we find that the energy change to second order 
is 

~II= ~I- 4 I D 5 S [ v (r)- ~I] (9) 

[v (p)- ~d 'P~a (r) <!1oa (p) 'Pob (p) dp dr; 

where the integral over p is from 0 tor, the integral 
over r is from 0 to oo, and the normalization is 

Equation (5), in which D = const, permits one to 

express Cf!ob by Cf!oa 'thus 

The results in Eq. (7) andEq. (8) , in which %b 
does not enter, obviously are not specific to the 
Lagrange method and can be easily obtained by 
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other means. The same cannot be said of Eq. (9), 
where c:p ob has entered in a clear fashion. 

of conversion electrons or electron-positron pairs. 
At the same time, both the conversion electron 
and the components of the pair may emit y quanta 
of a continuous spectrum with an upper 2oundary 
equal respectively toE - I and E - 2{1c <E is 

Translated by A. Skumanich 
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of calculations of the relative probability of inter
nal bremsstrahlung emitted by the components of 
a pair in a o+ .... o+ nuclear transition. As in Ref. 
l *, where the same effect is examined in the case 
of ordinary conversion, the calculation is done 

AN electric monopole transition from an ex
cited o+ nuclear state to a ground state which 

also has a zero spin and positive parity will in 
all probability be accompanied by the formation 

in the Born approximation and is therefore appli
cable only to light nuclei. 

The differential probability of internal brems
strahlung by the emitted pair in an electric mono
pole trans it ion is (Ti = c = l) 

e6 Q2 dw 
dw ~= __ o_- B/5 (<=- + e:+ + (il- E) p_de:_p+de+dQP dO.P dO.k, 

72 (2rc)8 N - + 

B =- fl2 (<=-- p_x_)-2 (<=+L + P+P- + <=+N + kp+- fl2) 

- fl 2 (<=+- P+X+)-2 (e:_e:+ + P-P+ + LN + kp_- fl2) 

+ (il (e:+N + kp+ + fl 2) / (<=-- p_x_) + N (eN+ kp_ + fl 2 ) I (e:+- P+X+) 

+ 2 [ e:! e:: + e:: kp + -1- e:! kp- - p +p- (p +p- + kp + + kp J 
+ fl 2 (P+P-- e:+e:-- N2)l I(<=--· P- (x_) (e:+- P+X+), 

(l) 

where Oo = S '¥j (r) '¥i (r) T 2 dr is the matrix After integrating over the directions of emer-
element of the electric monopole operator ('1'. and gence of all the particles (the nucleus is considered 
'I' fare the initial and final wave functions of the infinitely heavy) and over the energy of one of the 
nucleus); e:_, p_;e:+, P+, N, k are the components of the pair (the probability equation 
energy and momentum respective·ly of the electron is symmetrical with regard to the electron and posi-
positron, and photon; and tron) we obtain 

x_ = kp_ I Np_, x+ = kp+ I NP+· 

e6 Q2 
dwrt, y = 9 (:2rc~5 F (E; W, N) dW dw, 

F(E; W, N) = (11w) {[5W2 + 5\f'(il + 2w2- 5 (E- 2) w- (3E- 5) (il- 5E +~I] 

x V (W + 1)2-1 V(E-1- W-N)2 -1 + V(W + 1)2-1 [2W3 + 2W2(il + Ww2 

- 2 (2E- 3) W2- 2 (E- 2) WN + N 2 + (2£2- BE+ 9) W- (2E- 5) w 

+ 2E2 - 6E + 5]1n (E -1- W- (il + V(E -1- W- w)2 -1) 

+ V(E -1- \,ti- w)2 -1 [-2W3- 4lt?2N- 3l17w2- N3 + 2 (E- 3) W'2 

+ 2 (E-4) Ww + (E-3) N2 + (4E -9) W + 2 (E -2) (il 

+ 3E -- 5]ln (W + 1 +V (W + 1)2 -1) 

-(1 + 2w2) ln(W + 1 + V(w + 1)2-1)·111 (E-1- W -(il + V(E -1- ~~ -N)2-1)}, 

(2) 

where W is the kine tic energy of the electron or positron (the energy is expressed in units of p.c 2). 




