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In this case the potential of the scalar meson 
is of the focm 

U (r) =- ~- ln [1- A f ~)] e-xro 
(7) 

In view of the condition \f(r)\ ~ l, we can ex­

pand the potential U(r) in a series for r >A: 

a [ trA) U (r) = - f (r) e-xr 1 + -1- f (r) 
r 2 \ r 

(8) 

1 r A \ 2 • ] +-,-I -I /" (r) -t- 0 o o 

3 \ r; 

For r >>A, the function f(r)"" l, and we obtain 
the Yukawa potential 

U (r) = Qe-X'jro 

Equation (7) is a generalization of the Yukawa 
potential. When r ""A, the gravitational field 
greatly alters the potential of the meson field. From 
(7) and (3) we obtain 

U (0) = (0/A) ln [11(1- A<X)]o 

Thus the theory we have here developed is in a 
position to give not only a finite nucleon mass, 
but also a finite potential well depth for nuclear 
forces. In this lies its attractiveness. 

In conclusion I express my gratitude to Prof­
essor M. F. Shirokov for valuable advice and sug­
gestions during the performance of this work. 
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l AS is known, the total interaction cross 
•section is proportional to the imaginary part 

of the forward elastic scattering amplitude 1• This 

general relation, which is sometimes called the 
optical theorem, is the result of the unitary 
character of the S-matrix and holds true for par­
ticles with no arbitrary spin. It may be represented 
thus 

cr1 = (47t I k) Im Tr M (0') I (Zs1 + 1) I (Zs2 + 1), (l) 

if one introduces the matrix M(O), which connects 
the wave scattered through angle e with the inci­
dent wave, and designates the spins of the col­
liding partie les by s 1 and s 2 • 

When a spinless particle collides with a par­
ticle whose spin is l/2, the matrix M may be repre­
sented as 

M (6) =a (6) + b (6) (crn), (2) 

where a and bare functions of invariants (kk0 ) 

and k 2 = k 2 , a in the spin operator (nucleon), and 
n = [k:k] /\lk 0k]\is the normal to the scattering 

surface. 
When spin s 1 = l and s 2 = 0, M has the form 

M (6) = X (6) + Y (6) (Sn) + Z (6) (Sn) 2 (3) 

+ W (6) [(Sk0 ) (Sk) + (Sk) (Sk0)], 

where s is the spin-operator (deuteron) and the 
quantities X, Y, Z, and W play the same role as 
functions a and bin Eq. (2). 

For the scattering of Jllrticles with a spin of 
s 1 = l/2 on a target with an arbitrary spin of s 2 , 

we have 

M (0) =A+ O\H =A (4) 

+ B (a1n) + C (a 1m)+ D (a11); 

and, for s 1 = l and an arbitrary s 

S2 [(S, kk0) = (Sk) (Sk0 ) + (Sk0) (Sk) e, t. c. ], 

M(6) = K + L (Sn) +M (SI) 

+ N (Sm) + R (Sn)2 + T (S, kk 0) (5) 

+ F (S, nl) + V (S, nm) + Q (S, ml), 

where m =(ko- k)/ I k0 - k I, I =(k0+ k)/ I k0 + k I , 
and the quantities A, B, C, ... , K, L, M, ... are 
linear combinations of the total assembly 

(2s + 1)2 of the operators in the spin space 
2 
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of a particle with a spin of s 2 • When s 2 = l/2 
we have 

(6) 

C =I> (a 2m), D = e: (a 2 1) 

and analogous expressions for the quantities 
K, L, M, ... 

2. Differential elastic scattering cross sections 
are expressed 2 by M(e) in the following manner: 

cr (6) = Tr M+ (6) M (6) 1 (2s1 + 1) (2s 2 + 1), (7) 

which, in case of an arbitrary s 2 , becomes 

cr (6) = Tr (AA+ +HH+) I 2 (2s2 + 1) (8) 

when s 1 = 1/2 and an analogous equation when 
s 1 = l. 

The equations presented above indicate quite 
convincingly that when partie les with arbitrary 
spins collide, a simple inequality is applicable 

(9) 

When the collision involves a spinless particle 
and a particle with a spin of s 2 = 1/2, the func­
tion b(e) in Eq. (2) becomes zero for e = 0°, and 
then, just as in the case of a collision of spin­
less particles, it is easy to arrive directly at 
proof of the validity of Eq. (9), viz., 

cr (0°) = (lm a (0°)]2 

+[Rea (0°)] 2 ? [lm a (0°))2 = k2cr; 1 1671"2. 

Proof of the validity of Eq. (9) for the case of a 
collision of two fermions with spins of s 1 = s 2 
= 1/2 can be provided in the following manner. From 
Eqs. (l), (4) and (6) we have kcr1= 471" lm r1. (0°). 

On the other hand, (y (0°) = y' (0°) = 0) 

cr (0°) = I r1. (0°) 12 + I ~ (0°) 12 

+ I a (oo) 12 +I qoo) i2? I CJ. (OOJ ]2, 

and therefore, 

When s 2 = 0, s 1 = 1, the expression for the 
total cross section and for cr (0°) ( y (0°) = z (()0 ) = 0) 
can be represented as 

whence the validity of Eq. (9) follows directly. 
For the more general case where the spin of 

one of the particles is 1/2 or 1 and the other is 
arbitrary, a similar argument can be applied. 

3. In the exceptional case, as in (rr-N) scatter­
ing as observed by Karplus and Ruderman 3 , if 
at(E) is known over a wide energy interval, the 
dispersion relation can be used to calculate the 
forward elastic scattering cross section. In other 
cases, for example, that of (n - ex.) scattering, one 
can thus far, specify only the lower limit of the 
value of this cross section. 

Inequality (9) represents a useful restriction 
that may be applied in the treatment of experimen­
tal data on elastic particle scattering. For the 
most part, the region of small angles is not very 
accessible in experimental research on the angular 
distribution of scattered particles. In view of 
this fact, the presence of a lower limit for a cross 
section is useful; often one can, within the limits 
of error, pass several curves through the experi­
mental points in the region of large angles which 
curves can be differentiated only at small angles. 
As numerical evaluation shows, the lower limit 
of the magnitude of forward elastic cross sections 
can in certain cases be rather high. Let us give 
a few examples. When the neutron energy is 400 
mev, the cross section of neutron scattering by 
protons is, accocding to Eq. (9), a (0°) 
> 3.4 x 1o-27 cm 2 /ster, and the v:fue of the cross 
;ection a (13°) amounts 4 to about 4 x IQ-2 7 

cm2 /ster.npCorrespon dingly, for neutrons with 
energies of 590 and 630 mev, anp (00) is not less 
than 5.8 x 10-27 and 6.6 x 10-27 cm2/ster. respect­
ively. This shows that in the 400-600 mev energy 
region one should expect an increase of the cross 
section in the small-angle region in addition to a 
further tendency toward an increase with a rise in 
the energy of the colliding particles (total cross 
sections of (n- p) interaction remain almost con­
stant or even increase in the energy interval from 
300 to 2500 mev. 

Another example of the use of the restriction 
of the optical theorem may be afforded by the case 
of meson scattering in nuclei. The angular dis­
tribution of 300 mev 77--mesons elastically 
scattered by helium nuclei 5 decreases (in com­
parison with the large-angle region) perceptibly in 
the region of angles of 10°- 15°, where not a 
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single case of scattering was found. At 15°, one 
finds cr1tcx (15°) ""50 x l0-27cm2 /ster. From Eq. (12) 
and the known value of the total cross section, 
which is equal to 150 x 10-2 7 cm2 , we obtain 
cr1tcx (0°) ~ 75 x 10-27 cm2 / ster, which means that 
there is a minimum in the angular distribution 
of mesons scattered by helium nuclei. The presence 
of a minimum in the cross section is indicative 
of a different sign for the amplitudes of nuclear 
and Coulomb scattering, and this reveals a change 
in the sign of the nuclear amplitude in a (17- ex.) 
interaction in comparison with what took place 
at energies below 200 mev. This may be connected 
with the change in the sign of the amplitude for 
(17- N) scattering in the same energy region. The 
inequality (9) is near equality at high energies. 
For the region of solid angles ~c:u , where the 
differential cross section increases,, it is possible 
to obtain the value b.w :s:;; (47t I k) 2 0 5 I 0~' 
where a is the elastic cross sectio~. 

The a~thor acknowledges his obligation to B. M. 
Golovin, V. P. Dzhelepov, L.'M. Soroko and R. M. 
Sulaev for their interest in this investigation and 
for discussing it with him. 
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I N experiments using a ballistic type of apparatus, 
emission of light by the leading front of a shock 

wave in various gases was observed 1 although the 
temperature behind the shock wave in a polyatomic 
gas was insufficient in these cases to cause light 
emission. The following hypothesis may be ad­
vanced to explain this phenomenon. 

As a result of molecular collisions at the front 
of a shock wave the energy of directed motion is 

converted into random heat energy. Zener's cal­
culations 2 have shown that after approximately ten 
collisions Maxwellian velocity distribution of the 
molecules is established, while the rotational 
and vibrational degrees of freedom remain practi­
cally unexcited ("frozen"). In the above process 
all the energy is trans £erred only to the translational 
degrees of freedom, and the local gas temperature 
becomes much higher than the temperature corre­
sponding to thermodynamic equilibrium which is 
estab lis he d later. 

Electronic energy levels and rotational degrees 
of freedom are excited only subsequently to the 
excitation of the translational degrees of freedom. 
Depending on the individual properties of the 
molecules the electronic levels may be excited 
before the rotational levels, or the two may be ex­
cited simultaneously. In both cases the local tem­
perature remains higher than the equilibrium value. 
It is just this nonequilibrium distribution of 
energy that rna y be used to explain the observed 
emission of light, particularly since the light is 
emitted by the front of the shock wave where the 
vibrational degrees of freedom have not yet been 
excited; for their excitation 104 - 105 collisions 
are needed 3 • 

The subsequent excitation of rotational and 
vibrational degrees of freedom leads to a lowering 
of the gas temperature which tends to the equili­
brium value, and consequently leads to the cessa­
tion of light em iss ion. A more rapid rate of ex­
citation of the internal degrees of freedom will 
lead to a narrower zone of light emission; there­
fore in gases with polyatomic molecules the 
region of light emission will be narrower than in 
monatomic gases in which the temperature de­
creases only as a result of light emission. 
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