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Fic. 1. Electron-positron shower of 6 particles initi-
ated in the lead plate by an electron of momentum 360
mev/c.
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FI1G. 2. Energy distributi f
trons N (E). 8y ution of the secondary elec-

the corresponding experimental results of refer-
ence 2, and with the theoretical value forthis
quantity obtained in Ref. 3 by means of a
Monte-Carlo calculation of an electron cascade in

lead.

Observed no.

Number of show-

Number of | 0P Observed no, | &1 With @ glven
electrons gNitsh c;weirs of particles co;resgonding to
per numbergo},en expressed as | Pojsson’s law, ex-

shower particles. % of the total | pressed in %

0 — 2—3*% 17

1 88 53.6 30

2 34 20,7 26.6

3 30 18.3 15.7

4 3 1.8 6.9

5 1 0,6 2,9

6 2 1.2 0.7

7 1 06 0.1

8 0 0 0,01

*These data for therelative number of stoppages of
primary electrons are taken from Ref. 2.
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T has been shown that in investigating the
electromagnetic and meson fields of
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elementary particles, the effects of gravi-
tational interaction cannot be neglected!-5. The
present note is an attempt to find solutions to
the equations of the general relativistic gravi-
tational and scalar meson fields of a point nuclear
charge. The solution is nonsingular at all points
of the gravitational and meson fields. Although
it contains several functions whose form is not
given, this solution can be used to obtain the po-
tential of the scalar meson field, which is a gen-
eralization of the Yukawa potential; further-
more, it makes it possible to calculate the mass and
self-energy of the nucleon, which turn out to be
finite.

We take the general centrally symmetric ex-
pression for the interval in the usual form

ds? = — erdr? — ePr? {d6? 4 sin?0d D%} + e df?,

where A, i, and v are functions of r. The energy-
momentum tensor of the scalar meson field is

r_ (1 i OU oU
= () e G o

oxt ax*
oU dU
_8@( im OU_ dU u)}
i\& Gl dxm

We shall consider the field static and set U = U(r).
Then

T} = (1/87) (— e~ U + Y2UP); 1)

T3 = T3 = Tj=(1/8r) (e~ U2 + 2U2).

It is easy to show, on the basis of the invari-
ance of the Einstein equations under the transfor-
mation r » or, y - y/0, whereo is a constant,
that the solutions to these e quations is of the form

U=UVixr), e =e"®(yr); 2)

=MV (yr); et = e*oX (yr),

where U, o, ¢t and are solu-
tions for the case y = 0, and V, ®, ¥, and Y are
functions of the one argument yr.

As yr » 0, each of these four functions approaches
unity; i.e., for 7 » 0, the solutions for the cases
X # 0 and y = 0 are identical.

Let us set?

et

b=—2Inf(p),

where f(r) is an arbitrary function with no singu-
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larities in the region 0 < r <+ oo and satisfying
the following conditions:

PAGIESH F(M)],—g=0; [f (Myee = 1; (3)

' (Mmoo =0 [f' (N)]jmeo = O;

" (Nlmo =8 [f" (")];eeo = O.

Solving the Einstein equation for y = 0 and in-

serting the solutions for Uy, (", e,
o
e

and
into Eq. (2), we arrive at the general solu-
tion in the form

G 4)
VAT 14 (kG2cY)

X +(A29) (1 + q) .
Xln [X— (4,2q) (1= ,,)] Ve,

v [X—=(A29) (1 —q)17 .
=[x are) © o

Al TP rHN)9 L [X—(A)2q) (1 —q)a
¢ St [1 f(r)_] X [1\'+(A/2q) T+ q)] ¥ (xr);

et =X (xr) /12 (r),

where X is the solution to the algebraic equation

[X —(A/29) (1 — Q"7 [X + (A/29) (5)

X+ @I =rf2 ),
g =A[A 44 (kG2 <,

and 4 is a constant of integration which can be
determined from the conditions (3). From Eq. (4)
and conditions (3) it is easy to prove that all the
components of the metric tensor g;;, and of the
potential U are nonsingular as r - 0.

The self-energy of a garticle is calculated
using Tolman’s formula

(6)
w={r+ e n—ryvy—aw

g

0

It can be shown that with conditions (3), the inte-
gral in Eq. (6) is finite. Then the self-mass of
of the nucleon will be m = G25/¢2, and its
classical radius is ro = 1/8. If we neglect small
quantities of the order of £G2/c% = 10768, then
the constant ¢ ~ 1.
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In this case the potential of the scalar meson
is of the form

U(r):—%—ln [1—A]¥] e .

(M

In view of the condition |f(r)| < 1, we can ex-
pand the potential U(r) in a series for r > 4:

v =Lrme 14

For r >> 4, the function f(r) = 1, and we obtain
the Yukawa potential
U(r) = Ge > r.

Equation (7) is a generalization of the Yukawa
potential. When r ~ 4, the gravitational field

greatly alters the potential of the meson field. From
(7) and (3) we obtain

U (0) = (G/A) In [1/(1 — Aa)].

Thus the theory we have here developed is in a
position to give not only a finite nucleon mass,
but also a finite potential well depth for nuclear
forces. In this lies its attractiveness.

In conclusion I express my gratitude to Prof-
essor M. F'. Shirokov for valuable advice and sug-
gestions during the performance of this work.
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AS is known, the total interaction cross
esection is proportional to the imaginary part
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of the forward elastic scattering amplitudel- This
general relation, which is sometimes called the
optical theorem, is the result of the unitary
character of the S-matrix and holds true for par-
ticles with no arbitrary spin. It may be represented
thus

o = (4 /B Im Te M (0) ) 251+ 1)/ 22+ 1), (1)
if one introduces the matrix M(6), which connects
the wave scattered through angle 6 with the inci-
dent wave, and designates the spins of the col-
liding particles by s, and s ,-

When a spinless particle collides with a par-
ticle whose spin is 1/2, the matrix M may be repre-
sented as

M(6) = a (8) + b (9) (on), (2)
where ¢ and b are functions of invariants (kko)
and k2 = k2, ointhe spin operator (nucleon), and
n = [k k] /|lk k]lis the normal to the scattering
surface.

When spin s, = 1 and sy = 0, M has the form

M () = X (8) + Y (8) (Sn) + Z (6) (Sn)* (3)

+ W (8) [(Sky) (Sk) =+ (Sk) (Sko)],

where s is the spin-operator (deuteron) and the
quantities X, Y, Z, and W play the same role as
functions a and b in Eq. (2).

For the scattering of particles with a spin of
s, =1/2 on a target with an arbitrary spin of s,,
we have

MO =A+gH=A (4)

+ B (o1n) + C (3.m) + D {a.1);

and, for s . =1 and an arbitrary s

1
sz [(S, kko) = (Sk) (Sko) + (Sko) (SK) e. t. c. ],
M(©) =K+ L (Sn) + M (S])

+ N (Sm) 4 R (Sn)2 + T (S, kky) (5)

=+ F (S, nl) + V (S, nm) + Q (S, ml),

where m =(k, — k)/| ko“‘k|: ]:(ko+ k)/[ko+k|y
and the quantities 4, B, C, ..., K, L, M, ... are
linear combinations of the total assembly

(25, + 1)2 of the operators in the spin space





