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+ ~ ':'~o k2 + xk2 (iw + (3)] 

k2w2x.To 3i(oc+f3)-4w -iw2 k2}=0, + om (oc+f'+iw)2 oX 

;vhere 

This equation has the following solutions: 
l. k = 0, 

\Vi th 

n = T = 0, (iw + (3) u =- eocEjm (oc + (3 + iw). 

For iw -:/ -{3 this gives the current under the 
influence of the external field 

(taking into account that a. , {3 << w 0 ); this is the 

usual expression for the frequency of plasma oscil­
lations with "friction" taken into account. 

3. iw =-[X -x.T0jm (oc + (3)] k2, u = eEjm (oc + (3), 

T = - f 0n/n0 + i (ejxk) E, n 

=- (ikj47te) [1 + w~ (oc + (3f2] ~­

This solution can be referred to as the electro­
entropy wave. Fore -+0 it reduces to the usual 
entropy wave. 3 • 
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T liE variational principle for the phase shifts 
and scattering amplitudes has been investi­

gated for the nonrelativistic case in several 

k 1 2 
wor s. ' Parzen3 has fommlated the variational 
principle for the phase shifts in the relativistic 
case. The present note gives a generalization of 
the variational principle for all scattering ampli­
tudes to the case of the Dirac equation, and a de­
rivation of the virial theorem for the continuous 
Dirac spectrum. The results can he applied to the 
theory of high-energy electron scattering by nu­
clei. 

Let us consider the functional 

{l) 

+ V (r)- £] 'F1 (r) dr, 

where the functions 'I' i are not in general solu­

tions lf!i of the Dirac equation 

[a.p +(3m+ V (r)- E] tj!i = 0 .. 

For the exact solutions, I { lf1, 1f2!= 0. Let us 

restrict ourselves initially to potentials V which 
decrease faster than 1/ r as r -+aJ. Then, in order 
that the functional {l) converge at the upper 
limit, the asymptotic form of the trial functions 

lf 1 and lf 2 should he 

where ui is a unit spinor, G (I/, n) is a single­

valued function of direction, and n= r/r ; the upper 
sign in the second term of Eq. (2) refers to 
ljJ 1 and the lower one to 1jJ 2 • The function 1/J 1 

contains a plane wave propagating in the direction 
1/ 1 and an outgoing wave; the function 1jJ 2 , on 

the otherhand, is seen from Eq. {2) to contain, in 

addition to a plane wave with propagation direction 
1/ , an incoming wave. The asymptotic forms 

2 
of the exact solutions 1jJ and ·'· are similar to 

1 't'2 

Equation {2), but instead of the function G ( 1/, n ), 
they contain scattering amplitudes G 0 (v, n). 
Thus in the asymptotic form, variations o 1jJ 1 are 

due to variations o G (I/ 1 , n). 

The first variation ofthe functional (l), caused 
by variations o 1jJ 1 = t/Ji -lj!i of the functions lfi 

about the exact solutions lj!i , is given by 

81 = ~ ljid {a.p +(3m+ 1/- E} a'F1dr 
(3) 
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where the integration is taken over the surface of 
an infinite sphere, r ---+ CXJ, n = r/r. Here 

13'1:\ = 130 (VI> n) (pr)-1 exp (ipr). 

Let us write the spinors u and G in the form 

and eliminate the two-component spinors w and F' 
with the aid of the formulas 

Then, writing dw for the element of solid angle, we 
have from (3) 

- 27t + 
- pE 13 (v2 F ('YJ, 'Y2)). 

This Eq. (5) is the variational principle for the 
scattering amplitude F 0 (v 1 , v 2 ). From this it 

follows that the correct scattering amplitude is the 
stationary value of the quantity 

{(vt F(V1 , V2))- pEl I 21t}. 

When V is the potential of a central field, the 
variational principle for the phase shifts is easy 
to obtain from Eq. (5). In this case we choose trial 
functions which differ from the exact solutions in 
their radial parts. Then the functional (1) will 
converge ift he asymptotic forms of the radial parts, 
which are the same for both trial functions t/1 1 and 

t/1 2 differ from the asymptotic form of the exact 

solutions only in the phase ry and the amplitude 
A , For r -+(D we thus obtain the radial parts of 
the trial functions in the form 

rg1 (r) = A V ~ + 1 cos (pr + ~i 1 ); 

Then the variational princip,le for the phase shifts 
is of the form 

(6) 

The virial theorem for the continuous Dirac 

spectrum can be derived by variation of the length 
scale, as it has been previously derived for other 
cases by Fock4 and later by Oemkov. 2 Letusset 

where t/J; is an exact solution. Since the variation 

of the length scale changes the asymptotic beha­
vior of t/J; , we must investigate not Equation (1), 

to assure the convergence of I , but the functional 

I' {\ji (r + e:r)} = ~\jii (r + e:r) [~p 

+ (1 + e:) ([3m- E)+ V] \jl1 (r + e:r) dr. 

For £ << 1 this functional is given up to terms in 
( 2 by 

I' {\ji (r + e:r)} =- e: ~ \jii (r) [V (r) + r \7 VJ h (r) dr. 

On the other hand I' { tjJ (r + £ r)} is a functional 
of the trial function tjJ (r + £ r) = 8 t/J + t/J '(r) which 
is hardly different from the function tjJ '(r), for 
which I { tjJ '{r) } = 0. Therefore in order to cal­
culate I' { tjJ {r + £ r)} we may also make use of the 
variational principle (5). The asymptotic form of 
tjJ '(r) differs from that of t/J (r + £ r) only in the 
scattering amplitude: the scattering amplitude in 
tjJ '(r) depends on the mass m ( l + £ ) and the 
energy E (l + £ ), whereas that of t/J (r + £ r) de­
pends on m and E. Therefore in variation (5) we 
have the scattering 

13F =- e: [mo 1om+ Eo 1 oEJ F. 

This means that there exists a relation 

which is the virial theorem for the continuous 
Dirac spectrum. The virial theorem is convenient 
to use at high energies E > > m, when the deriva­
tive with respect to mass can be neglected. 

For the central field case, the virial theorem is of 
the form 

A2 ..!!_ [E 0Yl. + m ~] m oE om 
(8) 

00 

= ~ [ v (r) + r ::] [gi + 1n r 2dr. 
0 

From the variation {5) it is easy to obtain an ex­
pression for the change in the scattering amplitude 
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caused by a variation ofthe potential V (r; A) 
_, V (r, A +fA), where A is some parameter. From 

Equation (5) we have 

+ pE ~ + av o (v2 F(Yl> 'Y2))jo).. =-- lji - lji1dr 21t' 2 iJ).. 0 

(9) 

Variational principles (5) and (6) and the virial 
theorem (7), (8) are also valid for a Coulomb field 
for r .... oo , if we take account of the fact that in 
this case the asymptotic form of the wave functions 
should include terms in ln (pr). 
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S PHUCH and Goertzel' have calculated the rela­
tive probability of the internal Compton effect 

for magnetic22-pole transitions and Iakobson 2 has 
obtained a~ approximate relativistic formula for 
electric 21 -pole transitions, but only for small 
gamma-ray energies. In the present work a general 
formula is derived for the relative probability of 
this effect for both magnetic and electric transitions 
in the Born approximation and numerical calcula­
tions are carried through for some specific cases. 
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The process under consideration is characterized 
by the Feynman diagrams in Fig. 1, where the 

heavy lines correspond to a nucleus and the thin 
dashed lines correspond to an electron and photon. 
In the initial state we have an excited nucleus 
with charge Z, energy E and angular momentum J 0 , 

and an electron in the K shell with energy f 0 • In 
the final state, the energy and angular momentum of 
the nucleus are designated by E f and J f , and the 

energy and momentum ofthe electron and photon by 

f f, Pf and k, k, respectively. Hereinafter, we 

shall use the system of units in which h = c = l. 
Using the general methods of quantum electro­

dynamics in our calculations (see Ref. 3) v.e ob­
tain the relative probability of the internal Comp­
ton effect (the ratio of the absolute probability of 
the effect to the probability of a radiation transition 
of the nucleus) which for the magnetic 2i -pole tran­
sition is expressed by 

(l) 

k fl.E ] Ptk +-+- -(x2-1) m mp' p2 

2e1 (fl. Em+ k p') 

mp' [ ~2 + ) 2 ] [fl£m2 

+ k (m + k) p') sin &d&dk, 

L = (2 I 1t) (p 1 fl.E)i+'l• (p2- fl£2- 2!Zma.fl.E)-1, 

where !'} is the angle between the vectors Pf and k. 

This formula is in agreement with the re~ults of 
Spruch and Goertzel' if we neglect the width of 

IQ.J 

FIG. 2 




