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In rarticular, along with the previously known 
equation 

we have 

~ = q1 q2 q3 
P1 P2 Ps 

For the spin kernel (15) (s = ~) we find 

(55) 

Q2 = (1 / 4rc) (1 + 3n1n2); (56) 

Qa = 1/4 (2rc)-'1' (1 + 3n1n2 + 3n2n3 
+ 3nan1 + 3 V3 in1 [n2na]); 

Qs 1/ (2 )-'I• ( 1. • 
a-== 4 r: + 3n1n2 + 3n2n3 + 3n3n1)· 

Equatiorrs (54) and (55) are characterized by a 
lesser degree of quantum degeneracy (correlation) 
than Eq. (56), since Q 2 , and also the reduced 

functions JQ r+ 1 dq 1 • •• dqr and fQr+ 1 dp 1 ••• 

dpr' have the "classical" form (are equal to a­
functions), which is not true of the functions with 
spin. 
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The Fokker-Planck equation for a many-component plasma is derived by the method 
of N. N. Bogoliubov, and the coefficients are calculated in explicit form. 

T HE Fokker-Planck equation is usually derived 
from Smoluchowski's equation for stochastic 

processes, 1 and thus the dependence of the coeff­
icients in the Fokker-Planck equation on the law 
of interaction between the particles is left undeter­
mined. For a plasma the Fokker-Planck equation 
can he obtained from a known kinetic equation of a 
form given by Landau. 2 In this case divergences 
appear for large and small distances, owing to the 
long-range nature of the Coulomb forces, so that in 
Rei. 2 the integrals are cut off at the limits of small 
and large distances. 

The method of Bogoliuhov3 makes it possible to 
derive the Fokker-Planck equation on the basis of the 
mechanics of an assembly of molecules and to cal­
culate the coefficients in explicit form for a given 

interaction law. In the case of a plasma the diver­
gence of the Fokker-Planck coefficients at large 
distances is disposed of by cutting off at the Dehye 
radius, which is not introduced from outside, as in 
Ref. 2, hut follows automatically from Bogoliuhov's 
method. In the present paper we give a derivation of 
the Fokker-Planck equation for amany-component 
plasma with uniform spatial distribution, and study 
the asymftotic cases of the behavior of plasma par­
ticles at arge and small energies of motion. 

We consider the plasrm in a state of statistical 
equilibrium and investigate the behavior of a certain 
individual particle belonging to the plasma ( or a 
foreign charged particle projected into theplasma). 
In the derivation of the equation for the distribution 
.function of such a particle we assume that its in-

898 
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teraction with the plasma does not disturb the statis­
tical equilibrium of the plasma. Let the plasma, 
contained in the volume V, consist of N charged 
particles, which -J belong to M ..?: 2 different kinds. 
Let N a be the number of particles with charge e a 

and mass Jla , a= l, 2, ... , M. The Hamiltonian of 

such a system has the form3 

(l) 

+ 

x - (q ) th coord1'nates and momenta of the i- i, pi are e 

ith particle of the plasma. 
Now let 

Fa,b, .... b8 (X,x, ... ,Xs; 

be the distribution functions of 1? systems of parti­
cles composed of the chosen particle of kind a and 
s other particles of the plasma of kinds b!'J , ••• b5 • 

These functions at an arbitrary instant of time 
t > 0 are assumed to depend on the single particle 
distribution functions for the kinds of particles in 
question, Fa, F b ••• , at the same instant. Here 

X= (Q, P) are the coordinates and momenta of the 
chosen particle (or of the charged particle projected 
into the plasma). 

The equation focthe distribution function of any 
single particle of the plasma has the form3 

(2) 

+ ~nb~[«Dab(IQ-ql);gab]dx. 
b n 

Moreover, for the correlation functions gab we 

have (cf. Ref. 3) 

Dogab = [~ (Pa) 2 I 2(1-a + ~ (Pa) 2 I 2(1-b 
a a 

(3) 

+ Ua (Fa; Q) + Ub (Fb; q); gab] 

+ L}(nc/v) ~[Wac (I Q- q' I); gbc Fa] dx' 
c 

+ ~ (nc/ v) ~ [ci>bc (I q- q' 1 ); 
c 

Here the integration is taken over the entire phase 
space !1 ; U a and U b are self-consistent potentials, 

v = V /N is the mean volume per particle, and n c 

= N cl N are the concentrations ofparticles of kind c, 
c = l, 2, ... , ,tJ. By substituting into Eq. (2) the 
solutions of the equations (3), one can obtain the 
equation of motion of charged particles in theplasma 

In the special case of a spatially homogeneous dis­
tribution of the plasma Bogoliubov' s equation has the 
form: 3 

awa (t, P) 

ut 

X a<t>bc (I~- q'- (PI !La-P I ILb)" I) 
a~ a 

X hac (q', P; Wa) dp d't dq' 

~ awa (t, P) 
- n 

c apa 
c,a 

(4) 
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Here ( = Q-q, and wa (t; P) and wb (p) are the 

distribution functions of the chosen particle of kind 
a and of any other particle in the plasiiB for a uni­
form distribution in space. The first two integral 
forms in the equations (5) produce the effect of the 
Debye screening, which cuts off the correlation 
functions hab at large distances. 3 

To simplify the calculations we apply to the corre­
lation functions hcb an approximation of the form: 3 ' 

(6) 

where gb~ are the Debye functions: 

ggc (- q') = - U)'c I r ]) exp {- x I q' i } I I q' I; 

Ilrb=4~:~nse~f8v; x= 11rn. 

For the sol uti on rJ. the fl'Oblem we employ the 
Fourier integral3 

hab (~. p; Wa) = ~ ei(vt;) H ab (v, P; Wa) dv; 

Applying the inverse transformation to the equations 
(5), we find, in virtue of Eq. (6): 

Hab (v, P; Wa) 
(7) 

+ 2~:? L} ncYbc (!VI) Bb (v, P) Hac (v, P; Wa) 

= Lab (v, P; Wa); 

Lab= -1; YabAb (v, P; Wa) 

i ~ iJwa (t, P) 
- 4 .L.J "YancBbYacKbc; 

TC c," oPa 

"' iJwa (t, P) , 
Ab(v, P; Wa) = LJ--- ),aBb(v, P) 

c cP" 

-wa (t, P) Bb(v, P); 

(8) 

x exp{i"=(v(:b -~))}dpd"=, 
00 

B~ (v, P) = ~ ~ wb (p) 
0 

The solution of the system (7) for fixed a and b 
taking all possible values from l to M is given by 
the ratio 

where l':l is the determinant of the system 

l':l = 1 + 2'lt2i ~ ncYcc (I vI) Bb (v, P) 
c 

and Dab is thedeterminant in which the bth column 
has been replaced by the right members of the equa­
tions of the system 

Dab= Lab ( 1 + 2n:2i ~ ncYccBb) 
c 

c 

The solution of the system (7) can now be written 
in the form 

Hab (v, P; Wa) = H~b (v, P; Wa) (9) 

+ oHab (v, P; Wa). 

where H a~ describes the influence of the whole 
assembly of charged particles of the plasma on the 
behavior of the chosen particle of kind a: 

Hab =- (il4rr) YabAb/( 1 + 2rr2i ~ ncYccBc) 
£ 

and o H ab describes the influence of theplasma par­

ticles on each other: 

Applying the inverse transformation to Eq. (4), we 
find 
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owa (t, P.) 

at 

= i ~ ~ nb a!" ~ v"Yab (j 'I!) Hab (v, P; Wa) dv, 
b,"- (v) 

from which there follows the Fckker-Planck equation 
for a multicomponent plasma 

owa (t, P) 

at 
3 

~ ~ B"f> (P)~f3 Wa (t, P)(lO) 
"-,r>=1 ap ap 

~ a 
- '5~- A" (P)wa (t, P) . 

......., dP" 
'1.=1 

Here A a. (P) and sa.f3 (P), the coefficients in the 
Fokker-Planck equation, are given by 

A"' (P) = - 16: 2 ~ nb ~ ~"" Y~b (/ v!) Bb (v, P) dv; 
b (v) 

v ~ + 167t2 ~ nbnb' 
b, b' 

X(' v"vf3 , 
J ----x- Yab ([ vj) Yab' (/ vj) Kw (/'I/) Bb (v, P) dv. 

(v) 

For the determination of these coefficients it is 
necessary to calculate B b ( v, P) and B 'b (v, P). In 

statistical equilibrium of the plasma the distribution 
function for each of its particles, with the exception 
of the chosen particle, whose motion is assumed 
nonstationary, can be taken to be a Maxwell dis­
tribution 

Wb (p) = (2'-[Lb8)-'lz exp {- ~ (p"')2 /2[1-b8}. 

Substituting this into Eq. (8) and integrating over 
p, we find 

00 

B~ (v, P) = ~ exp {- ~:: " 2 - i ~a (vP)} d". 
0 

Here it is convenient to make a change of the varia­
ble of integratio'! 

"' = 'I" (8/[Lb)'l• 

and introduce the notation 

Uab (v, P) = ([Lb/[La)'l• (YP/v V [La8). 

It is now easy to calculate* B b and B b', and the 

resulting expressions for A a. and B a.f3 are 

(12) 

(' k"k[3 
X ) fk Yab (/ k /) Yab' (/ k /) Kw (/ k j) 

(k) 

Here 

c 
00 

'1Jac (k, P) = Uac (k, P) ~ e -~'12 sin Uac (k, P) "d", 
0 

We have taken as the unit of time t 0 =rn ('2JLa117S 112; 

k is a dimensionless wave-number: k =vrD • 

Let us examine the coefficients of the Fokker­
Planck equation for a plasma. We note than Ba.f3 
= 0 for a. =I {3. If the energy of the selected particle 
is small, much smaller than the average energy of 
the thermal motion of the plasma particles, i.e., for 

expansion of A a. and sa.f3 in series gives (since here 

Tfac(k,P)« l) 

*B and B ',respectively, are given by the absolute 
values of the real parts of the expressions (11). 
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A a (P) =- 1/3P (P/fLa(0) B + o (1/I;;P); (14) 

B'"i> (P) = 1/ 3 pB- (1/48-::3) p BL - 1 + o (l/8)~l5) 

B = 4" ~ (nce~e~fuc) L, 
c 

uc is the reduced speed of particles of kind c in the 

plasma, 

p is the mean density of the plasma, p = N IV, and 
L is a logarithmic factor: 

kmax 

L = ~ 
0 

kdk 
k2 + 1. 

(16) 

The upper limit of the integration, kmax = rDir 1 · 

is introduced because of the divergence of L at 
small distances r < r I , which correspond to large 

wave-numbers. At large distances and at small 
wave-numbers the Dehye screening, which follows 
naturally from Bogoliubov's method, assures the 
good convergence of the coefficients Au. and su.f3 

Indeed, choosing r I in the form 2 r 1 = e 2 IEl, we 

find 

L =In VI + (r1tJ2je4). 

Expanding the integral (16) in series, we find a 
formula agreeing with that of Landau 2 

L = In (kmex/k0 ), (17) 

where the lower integration limit k 0 =rD I r 2 is 

introduced because of the logarithmic divergence 
of L at large distances r > r 2 and small wave-
numbers. 
k ~rom a comparison of Eqs. (16) and (17), we find 

0. 

If the temperature e of the plasma is sufficiently 
high the screening radius r 2 is equal to the Dehye 

radius r D : 

r2 .. rD/k0 = rD VI + e4jrTl:J2 

= r0 (1 + e4/2r182 - • • ·) = rn. 

The factor L can now he expressed by theordinary 
Landau formula. At high plasma temperature the 
second term in Eq. (15), which takes account of the 
mutual influences of /the plasma particles, can be 
neglected. 

For the very slow particles of the plasma we have 
from Eqs. (14) and (15) 

I A a (P) I~ I s~r, (P) /, 

so that the equation for the asymptotic behavior 
of the distribution function of such particles can he 
taken in the form 

awa (t,P) = ~ ~ B'"fl (P) ~ w (t P). 
dt .-..J apa apr> a ' 

'"·13 

For large energy of the selected particle of the 
plasma, i.e., for 

we find from Eqs. (12) and (13), since TJ ac ( k, P)= 1, 

A" (P) =- V2-:: (fLae~'l• (~)'12 B· 
p2 fL ' 

( (-J' '/2 IL '!z 
B'"fl (P) = V'2-:: ~ ('!!:) B 

po ~J. ' 

where ll is the average mass of the plasma particles. 
For the very fast particles of theplasma 

in consequence of which the equation for the asymp­
totic behavior of the distribution function of the 
high-energy charged particles takes the following 
form: 

For the stationary motion of the selected particle 
of the plasma we get the Maxwell distribution in 
each of the cases considered. 

In conclusion I express my deep gratitude to 
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Academician N. N. Bogoliubov for suggesting the 
problem and directing the work, and to D. N. Zuba­
rev for a discussion of the work. 

l A. N. Kolmogorov, Uspekhi Matern. Nauk 5, 5 (1938). 
2 L. D. Landau, Phys. Z. Sowjetunion 10, 154 (1936). 

3 N. N. Bogoliubov, Problems of Dynamical Theory 
in Statistical Physics, State Tech. Press, 1946. 
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2-"· )1, . . . '~ ~ l ........ . 0 • 

c. ".<. 

(This causes a corresponding change in the 

numerical coefficients in the expressions that 

result from the calculation of the effects of 

the plasma particles on each other) . 

. . . exp {-(f- \/')} I· .. exp {-(T- V')rl} 

v l (lfJF0jfJx) + ... 
where E l is the pro­
jection of the electric 

field E on the direc­

tion 1 

A= 0.84 (1+221A) 
Tl2o4, 206 

... to a cubic relation. 

A series of points etc. 

where the bar indi­
cates averaging over 

the angle e and E l is 
the projection of the 
electric field E alodg 

the direction I 

A= 0.84/(1+22/A) 
11203, 205 

... to a cubic relation, 

and in the region 10 
- 20°K to a quadratic 

relation. A series of 
points 9, coinciding 
with points 0, have 

been omitted in the 

region above l0°K. 




