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The role of the Compton effect in the establishment of equilibrium between quanta and 
electrons is considered in the nonrelativistic approximation. 

l. INTRODUCTION 

JN order that radiation be considered as a closed 
system, it is appropriate to assume that it is 

contained in a vessel with perfectly reflecting 
walls. By itself, radiation in such a vessel can­
not achieve thermodynamic equilibrium: the equa­
tions of electrodynamics are strictly linear and 
the exchange of energy between vibrations of dif­
ferent frequency, direction of propagation and 
polarization does not occur. Therefore, we must 
consider thalt there is in the container, besides the 
radiation, a suitably small "carbon particle" 
which does not appreciably disturb the field at 
any given moment, but which is capable of ab­
sorption and radiation of energy of all frequencies. 
Over a sufficiently long time, the absorption and 
emission of quanta by the "particle" leads to the 
establishment of thermodynamic equilibrium. 

What will happen if we put a free electron in 
place of the material particle in the container? 
The container is taken to be large enough that we 
can neglect the quantization of the energy of the 
electron. The free electron does not absorb and 
emit, but only scatters quanta; therefore, the 
total number of quanta in the vessel does not 
change. What sort of equilibrium is established? 
If the occupation numbers n of the individual 
states are small in comparison with unity, then we 
can neglect induced transitions and assume that 
the probabililty of scattering a quantum in a cer­
tain state doo~s not depend on the number of quanta 
occupying this state. In other words, we replace 
the factor l + n in the transition probability by l. 
Then the same distribution will be set up among 
the quanta as in an ideal gas with a constant 
number of particles; i.e., we obtain a distribution 
of the form n = e·hw/kT (Wien's law). In this 
case the mean energy of the quantum is 3 kT. 

* This research was completed in 1950 at the Insti­
tute of Chemical Physics, Academy of Sciences, USSH, 
Heport No. 336. 

Planck's distribution is established only much 
later, since it exists as the result of induced emis­
sion. 

The physical conditions under which Wien's 
distribultion can exist can be represented in the 
following way. Let the matter be momentarily in a 
state with very high temperature, so that all the 
atoms are completely ionized, but assume radia­
tion has not yet been produced. Then the absorp­
tion and emission of quanta will occur at the ex­
pense of a "free-free" mechanism. The corre­
sponding emission process is nothing else than 
the bremsstrahlung of the electrons. This process 
is the more probable the lower the frequency of the 
emitted quantum. The same applies to the proba­
bility of the reverse process, the "free-free" ab­
sorption; therefore, for sufficiently low frequen­
cies, thermal equilibrium will be established by 
means of the absorption and emission of quanta. 
For high frequencies, the probability of Compton 
scattering exceeds the absorption probability. 
Since the quanta are scattered by the moving elec­
trons, their frequency can also be increased in the 
scattering. Initially, the number of quanta is not 
~arge: they will all tend toward thermal equilibrium 
mdependently of each other (i.e., induced proces­
ses will not constitute any significant part of all 
the scattering processes). The Wien distribution 
with mean energy 3 kT, is established among such 
quanta. 

For this reason, the transition of energy from 
matter to radiation will be much more rapid than if 
it took place at the expense of bremsstrahlung of 
the electrons. The bremsstrahlung quanta which 
have frequencies w greater than a certain definite 
frequency w 0 , will quickly and irreversibly in­
crease their energy by a Compton mechanism, 
tending to go to the maximum energy 3 kT. 

In the Sections below, the distribution function 
will be found for quanta which undergo the Comp­
ton process. In the Appendix we shall consider 
what energy the quanta extract from the electrons in 
a body of finite dimensions. 
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2. THE KINETIC EQUATION 

Let us write down the kinetic equation for the 
distribution function n of the quanta in an un­
bounded medium for the case of a single scatter­
ing. For generality, we shall at first not neglect 
induced processes. The equation has the following 

form: 

(~~)c =-~d-e ~[n(l +n')N(E) (l) 

- n' (1 + n) N (E + hw- hw')] dW. 

Here N is the distribution function for the free 
electrons, d 'T is the element of phase space of 
the electrons, dQ is the differential probability of 
transition from a given state into another, com­
patible with the laws of conservation of energy 
and momentum. The index C on dn/dt denotes 
that only Compton processes are considered in the 
equation. Statistical equilibrium among the elec­
trons in the plasma is established very quickly, 
ind~p~mdently of the radiation; therefore, we can 
consider the distribution function N (E) to be Max­
wellian. Then, if we replace n in Eq. (l) by the 
Planck distribution n = ( ehw/ k T - l)- 1 , then the 

right and the left parts vanish, as they must. 
We shall consider that the energy of the elec­

trons is nonrelativistic; i.e., we assume that the 
inequality kT << mc2 holds. Then the energy 

transferred in each separate act is small in com­
parison with the energy quantum h w: w' - w = 1'1. 

<<w. 
Making use of this inequality, we expand the 

integrand of Eq. (l) in a power series in 1'1. up to 
terms of the second order, inclusively. We set 

hw/kT = x: 

( iJn) [ iJn J h \ \ (2) 
7ft c= ax-+n(l +n) kT·jd-c ~dWN(s)~ 

The second integral on the right side of Eq. (2) is 
much easier to compute than the first ; but it suf­
fices to compute only one of the two integrals. The 
other is determined from the condition that the 
equation ought to guarantee conservation of the 
total number of quanta in the scattering. 

The laws of energy and momentum conservation 
in the nonrelativistic approximation are written 
in the form: 

(hw I c) n + p = (hw' I c) n' + p', (3) 

hw + p2 I 2m= hw' + p'2 12m. 

Here p 2 /2 m = E, p and p' are the momenta of the 
electron before and after the collision, n and n' 
~~ t?e d.irecti,ons of propagation of the quantum. 
Ehrrnnatmg p from these equations, we obtain an 
equation which determines w' as a function of 
w, p and the angles of scattering. In this equation, 
we set w = w '+ 1'1. and limit ourselves to terms 
that are linear in /'1., at least while we determine 
the integral which contains /'1.2. After simple 

transformations, we get 

h/'1. = _ hcoo (p, n- n') + (hoo)2 (1- nn') 
mc 2 [1 + (hoo I mc2 ) (1 + nn')- pn I me} • (4) 

It is valid to replace the brackets in the denomina­
tor of Eq. (4) with unity for the case of interest to 
us. The first term in the numerator has the order 

of magnitude (kT/mc 2 ) 3 1 2 and the second term the 
order (kT/mc 2 ) 2 • But we shall determine the 
integral of 1'1. 2 ; therefore, the contribution of the 
first term in the averaging over the angles does 
not vanish. Consequently, upon substitution in 
Eq. (2), we must compute the following integral: 

I= (hw I mc)2 ~d-e ~ dW (p, n- n')2 N (s). (5) 

After averaging over all directions of p we get 

The first integral is equal to 2m (3kT /2) 
= 3 mkT. In the second integral, we replace the 
Compton cross section in the nonrelativsitic ap­
proximation by the Thomson cross section, which 
is symmetric relative to scattering over the angles 
() amd (77- ()),so that J nn'dW = 0. The Thom­
son cross section does not depend on the energy 
of the quantum; consequently, 

I= (hw)2 (kT I mc2 ) c I l, (7) 

where l is the Compton range, which is determined 
by the total cross section ( 811/3 ){e 2/mc 2 ). 
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In order that Eq. (2) guarantee the conservation 
of the total number of quanta, we must set 

~ d'" ~ dW' N (s) il 
(8) 

= (kT I mc2 ) (c ll) hw ( 4- hw I kT). 

Equation (8) can he obtained in the following way. 
The kinetic equation for the quanta must look like 
a sort of conservation law 

where j is the "flow" of quanta in frequency 
space. Since Eq. (2) is of second order relative 
to x and contains the second derivative d2n/dx 2 

linearly, without a coefficient depending on n, the 
current must have the form of the sum of the first 
derivative an; ax and a certain function depend­
ing on n. But in the state of total equilibrium, 
when n = ( e" - 1 )-l, the flow vanishes. In this 

case, an/ax= -n( l + n ). It therefore follows 
that 

j=g(x)[anlax+n(I+n)], (10) 

wher~ the function g ( x) must be determined. Sub­
stituting (10) in Eq. (9), and comparing with (2), 
we find that g = -x2, and the unknown function 

f.. = x ( 4 - x ), which is equivalent to (8). Equa­
tion (8) is in qualitative agreement with Wien'~ 
law: the energy of the quantum increases so long 

as hw < 4kT. 
We now introduce the dimensionless time Y by 

the expression 

t = (mc2 1 kT) (ll c) = y. (ll) 

In these units, the kinetic equation is written in 
the following form: 

- ------x - n n (on ) 1 a ,4 (an + + 2) 
ny c -- x2 iJx ax . (12) 

If n << 1, then this equation transforms into the 
lipear relation 

r_an ') __ 1 __ ~_ x4 (an + n). 
\iJy 1c- x2 ox OX (13) 

This equation will also be solved. According to 
Eq. (13), it is easy to compute the time in which 
the energy of the quantum increases by a factor e 
as a result of the Compton effect. Multiplying 
both sides of Eq. (13) by x 3 and integrating, we 
get 

co co co 

£~ ~ nx3 dx = 4 ~ nx3 dx - ~ nx4 dx. 
0 0 0 

(14) 

While h w is still small in comparison with kT, we 
can neglect the second integral on the right in 
(14). Here x = x . . te 4 Y. This means that the time 

lnl 

for the energy to increase by a factor e is equal to 

'"c = (mc2 14kT) ll c. (15) 

3, BREMSSTRAHLUNG SPECTRUM 

The bremsstrahlung spectrum in the general case 
appears rather complicated. We assume that such 
conditions are satisfied in which the Born approxima­
tion is applicable for the determination of the 
spectrum. These conditions are satisfied in the 
light elements for sufficiently high temperature 
(from several tens of kilovolts and higher). At 
the same time, it is taken into account that the 
inequality kT << mc 2 is satisfied. We shall not 
take into account the scattering of electrons on 
electrons, with emission of quanta, since such a 
process makes a significant contribution only in 
very light materials and in each case it does not 
exceed the bremsstrahlung emission on nuclei, 
always remaining smaller than it. 

In the Born approximation, and in the nonrela­
tivistic case, the bremsstrahlung cross section is 
(Ref. 1, p. 183, Eq. (18)]: 

dw (16) 

In order to go over to the total number of quanta of 
a given frequency that are emitted per second, we 
need to multiply the cross section by LN ( i) vd T 

( L is the number of nuclei per unit volume, v is the 
velocity of the electron), integrate over all states 
of the electron and refer to the number of states of 
a quantum of given frequency per unit volume. Thus 
we obtain the equation 

1 - v'_rr_a_ za [2 es -hw/2kT ( hw ) 
:;.-;;· - 3 8m3 kT hw3 e Ko \ 2kT 

(17) 

Here Ko is the Macdonald function (Ref. 2, p. 206), 
T~ is the magnitude of the time interval which 
characterizes the bremsstrahlung. If we take 
into consideration the inverse abs~rption of quanta 
and their induced emission, then we obtain the 
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rate of change of the quanta as a result of brems­
strahlung and free-free absorption: 

(dn I dt)B = (1 I '=V [(I + n)- neh"' I kT]. (18) 

The derivative vanishes if we put the Planck dis­

tribution in place of n 
Digressing from the Compton process, and assum­

ign that the total change dn/ dt appears on the left 
side of Eq. (18), we can integrate (18). If n (0) 

= 0, then we get 

(19) 

n = 1 (1- exp {- -:...!~- (ehwJkT- 1 )}) . ehw 1 hT -1 .. 

It then follows that the relaxation time for 
thermal equilibrium of the quanta, for a pure brems­
strahlung mechanism, is equal to 

"B = 't~ 1 ( ehw 1 kT _ 1). (20) 

The total kinetic equation, which takes into ac­
count the Compton and bremsstrahlung processes, 

is now written 

(21) 

= kT _c _ _ 1 _ _i_ x4 (an , n + n2) 
mc2 l x2 iJx ox 1 

Going over again to the dimensionless time y, we 

get 

on 
-oy 

(22) 
= _ _!___ _i_ x4 (-iJn + n + n2) 

x2 ox ox 
4T + -~ [(1 + n)- ne-']. 
"o B 

The braking time TB decreases with decrease in 
the frequency, for example, as w 2 ; therefore, the 
quanta for sufficiently low frequencies will always 
undergo transition to statistical equilihirurn in 
processes of emission and absorption. The quanta 
of high frequencies will he taken up by the Comp­
ton process and thus increase their frequency, 
approaching the Wien distribution. It should not 
he thought that frequency of the quantum increases 
monotonically; Eq. (12) is of second order, of the 
diffusion type. The approximation of quanta to 
incomplete equilibrium ( with respect to energy hut 

not with respect to number ) is in the fashion of 
Brownian motion. The limit of the frequency, for 
which the Compton process takes up the quanta 
more rapidly than it succeeds in being absorbed, 
is determined by the following estimate: Tc/TB rv l. 
Substituting TC and TB in it, we get 

(23) 

The entire process considered (i.e., the estab­
lishment of equilibrium by the Compton effect) pre­
sents interest only in the case in which h w << kT 

0 ' 
since only then is there a frequency interval, 
w >> w 0 , in which the Compton effect plays an 
essential role. For small x 0 , the function K 0 can 
be replaced by an expansion in x 0 (Ref. 2, p. 96 ): 

K 0 (xoJ2) = ln(4/yx 0 ), where lny= 0.577. Thus 
x 0 is determined by the equation 

Ax;;-2 In (2.35 I X 0 ) ~ 1. (24) 

This equation has meaning only if A is a small 
number. 

We now compare the transfer of energy from the 
electrons to the quanta by pure bremsstrahlung and 
by the Compton mechanism*. 

The total energy of the quanta emitted by the 
electrons per unit volume is 

(Ref. 2, p. 424). All quanta whose frequencies 
are greater than w 0 transfer energy to the electrons 
by the Compton mechanism; on the average the 
energy of the quanta approaches 3 kT. Therefore, 
the energy transferred per unit time is 

00 

(dE I dt)c--:-- 3kT ~ "il w2 dw 1 -r;2 c3. (26) 
w, 

The principal contribution to the integral is pro­
vided by the low frequencies. Therefore, we can re­
place the function K0 under the integral by its 

* This comparison was pointed out to us by L. D. 
Landau, 
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approximate value; to avoid divergence at the 
upper limit, we do not integrate to infinity, but to 
w = kT/h. We get 

i<T 

( dE) = 3kT __ B_ ~ ~-In 4kT 
dt c crt2 c" h J w yhw 

Wo 

(27) 

If we do not make use of the approximate expres­
sion for K0 , then there will still stand a numerical 
component in front of the logarithm in Eq. (27). 
That is, in place of ln 2 ( 4/ yx 0 ), the integral gives 
ln 2 ( 4/ y x)- 0.27. But we can hardly consider 
this to be accurate, since the frequency w 0 is 
found by an estimation method. 

The ratio of the energy transferred by the Comp­
ton mechanism to the energy transferred to the 
quanta upon emission is equal to 

td£' (dE\ 3 2 l;kT 
1----) · --; --In-
\ dt /C · \ dt )B - 4 hyw0 ' 

(28) 

which can reach a few score. 
If we assume that quanta with frequency less 

than w 0 do not undergo Compton scattering at all, 
we commit a certain error. There is another, and 
somewhat more accurate, method of computing 
dE/dt. For sufficiently low frequencies, the 
state of the quanta is stationary, and for x-+ 0, it 
tends toward 1/x, i.e., toward the limiting form of 
Planck's formula. Therefore, n satisfies the ordi­
nary differential equation which is obtained from 
(22) if we discard an;ay in it. Moreover, we should 
also discard n in comparison with n2, and conse-

quently regard .x as a small quantity in the second 
component of the right side. This gives 

d 3 tdn ,\ 4A 235 * 
-dxx ~dx·+w)+x-(1-nx)ln~=O. (29) 

We now setn,=z '/ z,z = x + 1/J, tjJ << x. Then we 
get the equation 

__ cj_ x31ll'' - 4A w' In 2·35 = 0 (30) 
dX 1 X 1 X 

for tjJ '. 
This can be integrated approximately (by the 

WKB method) if we consider the coefficient for tjJ' 
to be a large number. With this accuracy, 

Ill' - C p ( 2 VA vr I 2.35} (31) 
I - ex l--x- n--:;; . 

* It is further assumed that In ( 2.35/x )>> I. 

Such a solution is valid, strictly speaking, only 
when the exponent is large in comparison with 
unity. But if we choose C = -1, then we get an 
interpolation formula for the distribution function 
which possesses the necessary properties and fo; 
X>> x 0 : 

n = -! ( 1 - exp {- 2 ~A V In 2·!5 }) • (32) 

For large x/.x0 , the number of quanta is much less 
than the equilibrium number. Adding the factor 
( 1 - nx) under the integral (27), a factor which 
takes into account induced emission and absorption 
of quanta, we get a converging expression which 
can be integrated from w = 0 : 

00 

(. ~£ ) - '3kT B \ 1 2 d 
dt c - ' 1t2 c3h .) -;r- w w 

(33) 

0 

X { 2kT VA • /I 2.35 kT} exp- hw V n~. 

The function under the integral vanishes for suffi­
ciently small w. The effective limit of integration 
lies at about w"' w 0 · 

4. GENERAL FORMULAS FOR THE AVERAGE 

FREQUENCY IN THE COMPTON PROCESS 

If the photon gas is still far from statistical 
eq_uilibriurn with the electrons, then the number of 
photons with frequency w > w 0 is small in com-
parison with unity. In this phase of the process, 
we can write down the following linearized kinetic 
equation for quanta with frequency w > w0 : 

(34) 

Let us first consider the corresponding homo­
geneous equation. For this we introduce a new 
unknown function by the formula 

n = e-:c/2 cp (x) / x. (35) 

cp satisfies the equation (we are considering the 
homogeneous equation) 

(36) 

~=x---xm+ --:-+2-- Xcp=A(x)cp. a a2 ( x 2) _ A 

(}y OX2 T 2 X 
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A 

Here A ( x) is an operator on the right-hand side. 
Some simplifications of the calculations arise be­
cause of the fact that 1 ( x) is a Hermitian oper­
ator*. 

Let us assume that the initial photon distribution 
is given in the form of some function n 0 ( x ); then 
the distribution at any later moment is written 
symbolically as 

(37) 

We assume that a quantum with frequency w 1 is 
emitted at the initial moment. Then n 0 (x)= 

8\( x- x 1 )/xi. We also compute (in dimension­
less form) the mean frequency which this quantum 
will have over some time interval as a result of 
the quantum process: 

(38) 

Here we have made use of the fact that a function 
of a Hermitian operator is also a Hermitian opera­
tor. In Eq. (38), there enters the function x(x 1 ), 

which clearly satisfies, relative to x 1 , the same 
equation (36) as Cf!(X) relative to x. In contrast 
to Cf!, the function X is subject to a different ini­
tial condition: 

X (y = 0) = xie-xt!2. (39) 

In what follows, the index l will be omitted from 
x 1' because the "current frequency" x enters no 
further. 

Thus, in order to find the mean frequency of the 
·quantum, which is emitted with an initial frequency 
x, we must solve Eq. (36) with the initial condition 
(39). For this purpose, we must first determine 

A 
the spectrum of the Hermitian operator A (x ). We 
set 

* We have introduced the operator A ( x) and found its 
spectrum by making use of the results of I. M. Gel'fand. 

z = In x, x = e-z12f ~'- (z) e-(ll."-'l.lY. (40) 

The function f ( z) satisfies an ordinary differ­
ential equatio/: of the same form as the Schrodinger 
equation for the vibration levels of the diatomic 
molecules, if the potential function of the nuclei is 
taken in the form of a Morse potential: 

Equation (41) is integrated with the help of the 
degenerate hypergeometric functions, which we de­
note by the variable x: 

(42) 

(Ref. 3, Sec. 16 ). Here W . ( x) is the Whittaker 
2 ·'fl 

function, which is a combination of two ordinary 
degenerate hypergeometric functions: 

Here M2 . ( x) is determined by the well-kn(JNn 
. ·'fl senes 

(44) 

The function W falls off at infinity as e-x, while 

M does not possess this property. Therefore, X 
is also expressed by W. 

We now find the function for the discrete spec­
trum, analogous to the vibrational states of the 
diatomic molecule (functions of the continuous 
spectrum correspond to a dissociating molecule). 
The discrete spectrum is possible for negative 11 2 

[see Eq. (41)] or for purely imaginary fl· The cor­
responding eigenfunctions should be quadratically 
integrable. According to Eqs. (42)-(44), the func­
tions W, for small x and purely imaginarY. I+• con­
sist of two components of the form x-Yz+lfll. How­
ever, we cannot integrate the square of the function 
for this upper sign. Consequently, the eigenvalues 
are numbers for which W consists only of functions 
with an integrable square. Here the numbers are 
I fll = 3/2 and I P.l = 1/2, since the first component 
of Eq. (43) vanishes [ [' (- 2) = oo, [' ( -3) = oo ]. 
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The series for the functions M 2 , Y. ( x) and 
M 2 , 3/2 ( x) are broken off. Elementary functions 
are obtained which we at once write with normal­
ized coefficients 

(45) 

X.112 (x) = "}12 (1 - xj2) e-x/2, x_312 = 2-I/2xe-x/2, 

The functions for the continuous spectrum are 
normalized by transition to their normalized asymp­
totic expansion in a way entirely analogous to that 
used in the problem of the hydrogen atom. The ex­
pansions are referred, not to large but to small x, 
because for large x the function W decays ex­
ponentially. It is seen from Eq. (41) that for 
z--> -oo, i.e., for small x, the function {Jl is pro­
portional to cos ( Jl z + ,\). The normalized factor 
of the cosine is ..j 2/ rr • Expressing W in terms of 
cos(JlZ + {3)"" cos (Jllnx +.\),we get the normal­
ized functions of the continuous spectrum 

(46) 

It is now easy to write down the general formula 
for :X ( x on the right-hand side gives the initial 
frequency of the quantum, previously called x 1 ) 

x = ! ex/2 [e-9Y/4 ~ e-P.,YCp.x_p.dfL 
0 

(47) 

+ e-2YCI/2X.I/2 + Cs12X.s/2] ' 

where t;;Jl' t;;y, and t;;312 are the expansi,n coeffi­

cients of the function x 2 e-x/ 2 [see Eq. (38)] in 

the orthogonal set of functions xJl; 'Y. and ,3/2 

are found in elementary fashion. For the determina­
tion of t;; we make use of the integral representa­
tion of ~he function W 2 ,iJl ( x) (Ref. 3, p. 345 ): 

x2e-x12 w2 ju (x) = --.-• .... 21tt 

ioo 

~ f(a)f(-a-itJ.- 3/ 2)f (-a+itJ.- 3/2)x6 d X cr. r (- itJ.- 8/2) r (itJ.- 3/2) 
-ioo 

With the aid of Eq. (46), we find 

ioo 
X (' r (a) r (a+4) r (-a -i11- - 3/ 2) r (-a+ i11-- 3J2 ) d 

~ f(-i!l--3/2Jf{ifL-a/2) 0 
-ico 

where the complex integral is taken according to 
Barnes' formula 3 • Substituting this in Eq. (47), 
making USe of the equation r(u)r( 1-u)=TTCSCTTU, 

and the fact that W2 . (X) is an even function of 
·'If 

Jl• we get the expressiOn for x in the form of a 
complex integral 

ioo 

x = ~2 e-xf2e-9Y14 ~ es,YW2,-s (x) tg 1tSX sds (48) 
-ioo 

( 1 1 \ 
- 2 x - 2-) e-2Y + 3. 

It is therefore evident that, as a result of the 
Compton process, the mean frequency of any 
quantum tends toward 3 kT /h, independently of its 
initial frequency. Application of Eq. (48) will be 
given in the Appendix. 

In conclusion, I wish ~o express my sincere 
gratitude to Ia. B. Zel'dovich who set up the 
present problem and displayed a constant interest 
in it, and also to L. D. Landau and I. M. Gel'fand 
who made a series ofimportant suggestions. Much 
of the results of Sec. 3 were obtained with the 
participation of the late S. P. D'iakov. 

APPENDIX 

THE COMPTON PROCESS IN A BODY OF FINITE 

DIMENSIONS 

We can compute the average frequency which is 
possessed by quanta in a body of finite dimensions 
as a result of the Compton process. Since the 
Thomson cross section does not depend on the 
energy, the diffusion coefficient of the quantum is 
a constant. Here the probability of emission of a 
quantum at the instant of time y depends exponen­
tially on the time only if the initial distribution 
corresponds to one of the eigenfunctions of the 
diffusion problem. It is natural to take a distribu­
tion which corresponds to the ground state eigen­
value since only it of all the functions is constant 
in sign. In dimensionless units, the probability of 
emission of a quantum from the system is given by 
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dw (y) = ~e-f3Ydy. (I) 

The mean frequency of the emitted quantum in this 
case is less than 3 kT /h. It can be determined if 
we multiply (I) by x and integrate over y: 

ico (II) 
= \- i~ex/2 \ 
x = J xdw (y) = --:;2 J tg 7tS W 2,-s (x) 

-ico 

The energy transferred to the quanta from the 
electrons under these conditions is equal to the 
integral (II), taken over the bremsstrahlung spec­
trum. We introduce the notation 

co 

H (x0 , s) = ~ M2.-s (x) Ko ( ~) d:a. (III) 

We then have 

= (' - (x) dx x = J .Xe-x/2 Ko 2 x (IV) 

ico 

= i~ ~ tg TCS {r (_!s1~2~ s) H (x0s) 
-ioo 

x, 
00 

+ 3 ~ e-·*Ko ( ~):1:. 
x, 

The complex integral of the first component is com-
pleted by the integral over an infinite semicircle 
in the left half-plane. Then the entire integral is 
expressed in the form of the sum of the residues of 
the expression under the integral from poles located 
to the left of the imaginary axis. These poles are 
located at the points s = -l/2, -3/2, -5/2 and, 
furthermore, at the point s = ..j {3 + 9/4. The resi­
dues at the first two points are reduced with the 
last two integrals in Eq. (IV). The residues at 
the points s = -5/2, -7/2,-9/2 remain finite 
even for x 0 = 0. Therefore, we can replace x 0 

in them by 0. All these residues give only a 
small contribution to the integral. The principal 
contribution is made by the residue for 
s=-../9/4+{3=-(3/2+u).(Ifthe bodyhas 
dimensions that are not teo small, then u is a small 
number.) For~, we get the expression 

::=-2,.~tg"V~+9/4 r(--2Vi1+9/4) (V) 
r (- 3!2- V ~ + 9/4) 

x H (xo,- Vr + 9/4) 
00 + 2} (-)k(k + 2)! ~ 

k=2 (2k + 1) ! ~ + 9/4- (2k + 1)2/4 

X H (' 0 - 2k + 1' 
' 2 ) . 

The quantities H ( 0, - ( 2 k + l )/ 2) are decom­
posed into the converging numerical series 

H(O, -5/2) = 2.27, H(O, -7/2) = 2.31; there­
maining expressions of this type are multiplied 
~y small coefficients. We putH(x 0 ,-..Jf3+9/4) 
m the form of the difference between two integrals 

(VI) 

H (xo,-V~ +9 I 4) = ~ M 2,-('i•+uJ (x) K0 ( ~) d:a 
0 

x, 

- ~ M2.-('l•+n) (x) Ko ( ~) d:a . 
0 

The first integral [we call it F ( u)] is computed by 
expansion of M in a power series, The numerical 
values of F ( u) are the following: 

u = 0.01 0.03 0.1 0.2 
F (u)= 10080 1137 107 28.8 

u = 0.3 0.4 0.5 0.75 1.0 
F(u)=l3.7 8.2 5.7 3.3 2.2 

In the second integral in (VI), we must use the 
expressions M and K 0 for small x. This gives 

r' (Xy) X~ ( 4 1 ) · J xu-I In 4 dx = u - In yu - u . 
0 

As u tends to zero, we obtain the results for an 
unbounded medium that we already know. 

l W. Heitler, Quantum theory of radiation. 

2 G. N. Watson, Theory of Bessel functions. 

3 E. T. Whittaker and G. N. Watson, Modern Analysis, 
4th ed. 
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