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The motion of a hole in a homopolar crystal of the diamond type is examined on the basis of 
the many-electron equations of Schrodinger. The presence of a hole is represented by the sub­
stitution of one paired bond by a monoelectronic one, which leads to the appearance of an ad­
ditional force tending to deformthe crystal, The corresponding term in the Hamiltonian is con­
sidered as the interaction of the hole with the deformations of the lattice, The meaning of the 
force obtained in the way for the problem of autolocalization of the hole, the scattering of 
current carriers by the lattice vibrations, and the theories of mobility, thermal emf and 

Nernst effect, is discussed. 

1. INTRODUCTION 

THE experimental study of the temperature de-
pendence of the mobility, thermal emf and 

galvanomagnetic effects in Ge, and in particular 
in Si, indicates the insufficiency of the elementary 
theory of scattering of electron waves on the acous­
tic oscillations of the lattice 1, leading in particu-
lar to a temperature behavior of the mobility 
u "-' r- 3 12 • ForGe of p-type the mobility more 
closely follows the formula u "' r- 2 •3 2. There are 
known to be anomalies in the dependence of the 
latter. The value of the effective mass of a hole in 
Ge is found to be different in different experiments 
(in particular, cyclotron resonance gives m eff/m 

'V 0.043). 

These anomalies are usually connected with the 
complex structure· of the valence band at its upper 
edge (the triple degeneracy, whereby the surface 
of constant energy in k-space for small k differs 
from the spherical shape and the maximum energy 
corresponds to k f. 0 4). The corresponding calcula-
tions of the energy bands in Si, Ge and diamond5" 7 , 

in general support this conclusion. However, in 
examining such detailed effects as the temperature 
dependence of mobility, the anisotropy of the resis­
tivity in a magnetic field, etc., it is hardly possible 
completely to trust the one-electron approximation 
and the entire band scheme. 

It is expedient to examine the motion of a hole on 
the basis of the many-electron problem and to find 
the energy of the crystal as a function of its wave 
vector, taking into account that the valence elec­
trons of a homopolar crystal bring about bonding 
forces between the atoms therein. The formation of 
a hole must therefore produce the breaking of a 
bond and the appearance of forces tending to deform 
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the crystal. There is no reason to expect that the 
corresponding potential energy will have the usual 
form u 'V V ( u is the displacement of a point of the 
crystal, V is the periodic potential). The destruc­
tion of the bond must lead to a strong interaction 
of the hole, particularly with the optical vibrations, 
which obliges us to examine the mobility anew. In 
the work of Kontorova 8 , who studied the scattering 
of the conduction electrons by the acoustic vibra­
tions of the lattice, using the dispersion law 
w = w 0 in place of the usually assumed law 

w = ck ( c is the velocity of sound), the mobility 
turned out to be proportional to r-s I 2 , in better 
agreement with experiment than the usual theory 
gives 1 . In fact, the dispersion law w = w 0 can 
take place in the optical modes. However, the 
term u 'V V assumed by all authors (among them 
Kontorova also) for the interaction with the vibra­
tions cannot guarantee any strong scattering by the 
optical modes. Furthermore, the concept of a 
periodic potential V for the hole is devoid of mean­
ing. In this case the interactions are more correctly 
considered as the alterations of the bonds between 
the atoms. 

Finally, the mean free path of the current carriers 
is usually (except in Ge) of the order of or smaller 
than the de Broglie wavelength 9 • In each case the 
criterion for applicability of the perturbation theory 

2 ' uM/m >> 500 em /sec/v (M is the mass of a current 
carrier, m is the electron mass, u is the mobility), 
shown by Pekar, is very seldom satisfied 10 . 

Therefore, the possibility is not excluded that 
the current carriers in a homopolar crystal, as in a 
polar one, are so-called "condensons" considered 
by Pekar and Deigen 11 • It is clear that the success 
of the computation of the "condensons" depends 
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essentially on the correct choice for the forces of 
interaction between electron and lattice. 

One of us ( A.M.F.) has carried out a calculation 
of the wave functions and energy of the crystal with 
an electron missing from one of the bonds (hole-) 12 , 

taking into account a possible small deformation 
of the crystal. The results of this calculation and 
consideration of the consequences of the interaction 
found for a hole with the lattice vibrations are pre­
sented below. 

2. THE WAVE FUNCTION AND ENERGY ON AN 
IDEAL CRYSTAL 

We consider a diamond crystal, having in view 
that for Si, Ge and u:.-Sn, the structure of the lattice 
and the configurations of the valence electrons and 
bonds are quite similar. 

In the union of C atoms into a crystal the wave 
functions of the valence electrons of each atom are 
deformed, with the formation of a-bonds with each 
of the four nearest neighbors. The functions of the 
a-bonds considering the syrr.metry of the crystal, 

' 13 are approximately represented by the formula 

~a (r) = c1S (r) + 3c2P (r) cos.&, (l) 

where 1? is the angle between the radius vector of 
the electron r and the radius vector of the nucleus 
nearest to the given electron, S ( r) and P ( r) are 
radial parts of the s- and p-functions, c 1 , c 2 are 
approximation parameters. 

We seek the wave-function of the crystal in the 
form of an antisymmetrized product of wave func­
tions of the bonds of each pair of atoms a, b: 

(2) 

u:., f3 arespinf1mctionsequaltolorOfor a=± l/2. In 
what follows we shall number the atoms with a 
cell-index l, the index of the atom in the cell 
s = 1,2, and we shall also introduce for each 
function the number of the bond u:. = l, 2, 3, 4. 

Besides interchanges of the electrons inside the 
bond (2) we consider also interchanges between the 
wave functions belonging to the same atom. In 
Fig. l this corresponds to the interchange of elec-
trons between IJ1 b and IJ1 only in the tern1s a ac 
,/, ( r ) and,/, ( r ). we neglect the exchange and 
'I" a 1 'I" a. 3 

the exchange energy of electrons found on different 
atoms but not on the same hond. The potential 

FrG. L Schematic representation of the bonds in a 
crystal of the diamond type. The dotted ovals J 2 3 4 
represent the form of the !/;-cloud of electrons !f)a (i),' 
1/;b (2), 1/;a (3), 1/;b (4). The vectors a 1 , a 2 , a3 , a4 (or 

what is the same thing, a ., since a 1. =-a . ) represent 
S< ' 2• the directions of the bonds. 

energy excludes the mutual interaction of all the 
valence electrons and the nuclei, screened by the 
internal electrons. The wave functions of the elec­
trons on different nuclei we consider approximately 
orthogonal. The functions of the electrons of one 
atom but of different bonds are orthogonal on ac­
count of the angular parts [see Eq. (1)]. With 
these assumptions the energy of the system will be 

(3) 

(lt= ~ · · · ~ .2: 8 (P) p n 'f" Is« (ftscq Ozs~Ifts"2cr/s<X2) .7t' 
P ls<X 

X n 'f"zscx (rtS~lcrlS~lrls<X20[scx2) d-r:; 
ls" 

P is the exchange operator for electrons, f ( P) 
= ± l. In computing the average potential energy 
of an electron located on the bond ab of Fig. l, 

atom c can be considered neutral. In the indicated 
approximation Eq. (3) breaks up into the sum of the 
average energies of the separate bonds; in this the 
energies of the interactions of the electrons on the 
bonds ab and ac are conveniently divided equally 
between these bonds. In atomic units, 
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[1t = L9'tlsot (Ra, Rb) = ~ {3 (1 + S 2P ~ r~a [pa (1) + Spab (1)] [pa (3) 
(4) 

!sot /sot 

+ Spac (3)] d-cld-r:s + 6 (1 + S2t 2 \ _!_ [pb (2) + Spba (2)] [pa (3) J r2a 

z2 2Z (' 1 
+ Spac (3)] d"2d't3 +a- 1 + s2 .)-,:;;;: [Pa (1) + Pb (1) + 2Spab (1)] d't1 

6Z \ 1 _ (9) \ 1 
- 1 +sz.)r;:; [pa(l)+Spab(l)]d'tl+(l +S2) 2 ~.)r34 [Pa(3) 

+ Spac (3)] [pb (4) + Spbd (4)] d'tsd"4 

+ 2 (1 ~-52)~ r~~ [~a (1) ~jib (2) +'fa (2) '-\lb (!)] d't1d't2 

- 1 ~ sz [~ '-\la~'fad"C + 2S ~ 'fa~'-\Jbd't]}. 

Here the first two terms give the interaction of the 
electrons on bond ab with electrons found on the 
bonds of atom a with atoms of type c; the third 
term gives the interaction of the nuclei a, b; the 

fourth and fifth terms, the interaction of the elec~ 
trons on bond ab with their own and also with 
neighboring nuclei; the sixth tern,, the interaction 
of electrons on bonds bd with electrons on the 
bonds ac. The last two terms represent the ex­
change and kinetic energy of the electrons of the 
bond ab (see Fig. l ). 

3. THE WAVE FUNCTION AND ENERGY OFTHE 

CRYSTAL WITH ONE ELECTRON REMOVED 

In the presence of a hole it is necessary to 
find the wave function of the system in the form of 

a linear combination of functions 'I' ls a. of the type 
(2), in each of which one of the bond functions 

'I' ab is replaced with a function of one electron 
with indeterminate direction of spin 

that is, 

<fb (rzsa) [ocz ( crzsa) + ~~ ( crzsa)], 

'¥ = ~Alsoc'¥lsot• 
lsoc 

(5) 

(6) 

If all the atoms are at rest at the lattic sites, then 

Atsot = N-'1"Aso: (k) exp {ikR;}. (7) 

Substitution of Eqs. (5)-(7) into ;R gives 

[lt'- ~{/A [2~ "A* (8) - .L..J sa t7~ Sr:t., S« + ~ soc A sa.'flt st:J., srx' 
sa 

+ ~ A• A ~~ z· l' z LJ Sot s'oc•J&s-;, s'a' exp {ik (Rs'- Rs)}, 
"' l 

where ji is the average value of the Hamil-sa.,so. 
tonian U over the functions 'l'lso.' which does not 

depend on the index l and which is obtained by 
striking out of the expression (4) the terms corre-

sponding to the missing electron. U 8 d, 8 d 'and 

jl"l-l ' , , are matrix elements for the transition of 
s().., s ()... 

a hole from the bond ab to the bond ac and corre­
spongingly, from atom a to atom b on the same 
bond ab. Only these off-diagonal matrix elements 
are considered which correspond to the transition 
of an electron from one atom to the neighboring one 
on the same bond, or to the transition of an elec­
tron on a single atom from one bond to another. 

r.-; 
+"V6-+'Ic" 

Zc-!11 
-~ 

E(x)·ff.sasa -c 

/{ 

FIG. 2. Relative locations of the hole bands in the 
crystal of the diamond type. The energy levels (9)-(10) 
coincide, respectively, with the lower edge of the first 
and the upper edge of the second band. 
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Figure 1 gives the notation for the vectors a 1 , 

a a a characterizing the directions of the 
2' 3' 4 . 

bonds 1, 2, 3, 4. The coefficient A 12 designates 

that the hole is found on atom 1 and bond 2, etc. 
Applying a variational principle, we obtain a 

system of linear equations for the eight coeffi-
cients A ; setting the determinant of this system so. 
equal to zero, we obtain the eigenvalues of the 
energy: 

E =fltsrz,srz +b-e, 

Cfl (k) = 1 + COS (kxd I 2) COS (kyd I 2) 

+ cos (kxd 1 2) cos (kz{l 1 2) 

+ cos (k1d 1 2) cos (kz{l 1 2) 

(10) 

(ll) 

(dis the edge of the lattice cube); the roots (10) 
are double-valued. In analogy with the results of 
calculations for molecules, one can expect that 
c > 0 and b < 0 13. 

Figure 2 shows the arrangement of the bands.For 
?ole_ co.n~uctiion only the lo_west. band (signs -, +) 
IS Sigmficant. The states m tlus band are nonde-
generate and the energy for small k can be written 
as 

E- fltscx,srz -- C =- 2c -I b I+ (tt2 I 2{1-) k2 ; (12) 

h2 12~-= (d2 I 16) I b 1 c 1 (21 c 1 + 1 b J). 

In this way in our approximation it is impossible 
to explain the peculiarities observed in hole Ge 
(the presence of two effective masses, the selec­
tive infra-red absorption, the anisotropyof magneto­
resistivity, etc.). Obviously, for this it is neces­
sary to keep the exchange integrals for more weakly 

overlapping wave functions, which leads to a 
splitting of the levels (10) into four bands. 

4. INVESTIGATION OF LOCAL HOLE COMPOUNDS OF 
LARGE RADIUS 

If the atoms of the crystal are deformed, the co-
efficients U . , etc. depend on the coordinates 

s .J.., su.. 

of all the aton1s, and the solution (7) will not ob­
tain. However, it is possible to use the more 

general formula (6) with arbitrary constants Alsv.' 

or their Fourier expansions: 

Asb -== ) 1• ~A(~, k) A.," (k) exp {ik R!} dk. (13) 

The A ( [3, k) are functions of k to be determined; 
they contain certain approximation parameters [3. 
We assume that the "radius of the state" of our 
hole is large enough and that in the expansion (14) 
there enter only values of k small compared with 
the inverse lattice constant. Then it is possible 
to use fCq. (12) for the energy and as~ume approxi-
mately A . ( k) "' A ( 0 ). For the lowest bands: 

sa.. si.J... 

The average value of the Hamiltonian over the 
functions (6) will be : 

:7t' == -~--\A • (~, k) k 2A (~, k) dk 
2(-t .) 

+~~A* (~, k') W [u!J k'k A (~. k) dk dk'; 

1 ~ Rz' W[u!hk'=N .L.J AscxAs'"'exp{-ik s' 
sl" 

s'l'cx.' 

(14) 

(15) 

On account of the axial symmetry of the wave 
functions with R1 f. R1 ', the basic dependence of 

s s 
the integral (15) will be a dependence on the dis-
tances of the atoms occurring in the bond ll ', ss '; 

as. = R1 - R1 ',. But if R l = R1 ',, then the prirr-ci-
z. s s s s 

pal role in the dependence of the deformation will 
be played by the term for the interaction of an atom 
lacking an electron with the neighboring atom. We 
designate the corresponding tern1s 

The first components in (16) [after the summation 
in (15) over l and l '] are retained only fq! k' = k, 
and will give a constant contribution to U . In 
summing the second components, we shall change 
from the deformations u1 to the normal coordinates 

s 
of the crystal q ly by the formula: 

u! = ~ ur (f) exp {ifR~} qfy; (17) 
fy 
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f is the wave vector, u~ and y are the amplitude 
and branch number of the eigenfrequencies. Sub­
stitution of (16) and (17) into (15) gives 

w [uZ] = "'(uY _ uY eifasi) q (18) s kk' ~ s s' fY 
fy 

The local states of the hole will be stable if 
J.i' + U0 has a minimum and lies lower than the 
bottom of the band. Here U0 is the work of de­
formation of the crystal, equal to 

(19) 

p2 -- -
+ 4-2 e-x• [~ x _ J~/ ~ !lJ (V_3_ ) 

Fi Vrc 2 3 X 

- w (x) + lf3w ( /r )]} , 
X 

<li (x) = :n ~ e-z2 dx. 
0 

The quantity! (x) for x « 1 behaves like 

(a~; w~ j c2) x3 ( 1119 + 13F 2 I 36 F 1 + 7 F~ I 9Fi), 

and for x >> 1 like 

Adding (14) and (19) and minimizing the sum over 1'he tr d f "t d f B b b · d ue or er o magm u e o can e o tame 
qfy we find the equilibrium deformations of the atoms by considering that}\"-' e 2ja;i. Then Bh2 / J1 

of the crystal, ijfy. We take as an approximation "'5~. Consequently: the minimum of Eq. (21) is 
( ) attamed for x"' 30, I.e., for very small radii of the 
20 state, when the effective-mass approximation is 

insufficient. Thus the existence in a homopolar 
crystal of states of large radius, similar to those in 
a polar crystal, appears hardly likely. 

and limit ourselves to only the interactions with 
the longitudinal vibrations of the lattice, whereby 
the optical and acoustic frequencies are w 

opt 

= w 0 , w = cf. As the result of a moderatley long 
ac 1 

computation 2 we obtain: 

;;c + uo (qfy) (21) 

= ( 4Fif 3 (27r)'lz w~ I asi )2) [(B:Ii2 x2 I 2p.)- J (x)J, 

B = 9p (asi (27r)'1' (l)~ I 4Fi, X= ~ I asi I; 

J (x) = x3 { 1 - e-sx'/3 + e-a• (22) 

+ e-4x'J3 + 4 ~:- e-x':2 (e-x'/4 _ e-t9x'/J2 

+ e-9x'f' _ e-Hx'/12) 

5. INVESTIGATION OF LOCAL HOLE STATES OF 
SMALL RADIUS 

For local states of small radius it is conveni­
ent to use an expansion of the form (6), into which 
will enter only a small number of terms. From the 
form of the symmetries one can expect that the 
lowest local state's of the hole will be of two 
types: 

a) Coefficients A1 . for a certain central atom su. 
,are all equal to A, but on the four nearest neigh­
bors to it only those Azso. which refer to the bonds 

of these atoms with the central one are equal to 
B f, 0; 

b) The coefficients Alsu. for two neighboring 
atoms are equal to A, if u. is their common bond, 
and to B if u. denotes their bonds with neighbors. 
The normalization conditions will be 

a) 4 (A 2 + B 2) = 1, b) 2A 2 + 6B2 = 1. (23) 

The average value of the Hamiltonian J.i over the 
functions (5) is equal to 

a) f?t' = 6A 2c + 4ABb + 4(A 2 + B2):1ts~.s~. (24) 
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b) (25) I 

Finding the minimum U' and the coefficients A and 

8 in both cases, we obtain 

a) E = :ltsa,sa + 314 C + 114 lf9c2 + 4b2 ; (26) 

B / A = - 4b I [- 6c + V 36c2 + I 6b2], 

1\e consider the second tern1 in Eq. (28) a small 
perturbation and determine the scattering of holes 
by the vibrations by the methods of perturbation 

theory. In the zero-order approximation the ¥.!ave 
function and the energy of the system are equal to 

(29) 

(2?) ()) is an oscillator wave function,n fy the quantun1 

·c-:-----::--:-::--~- numbers of the oscillators. We find the mixed 
b) E = :Jt so,so + 1 l 2c + 1l4b ± 114 Y(4c- b)2 + 4bc; matrix elements: 

B I A = -- c I [ c - 1 I 2b + 1 I 2 V ( 4c - b )2 + 4bc ]. ( ... nr' k' 1· W /k ... n ) 
Y.,. fY ... 

(30) 

Comparison with Eqs. (12) shows that the auto­
localization of the holes is energetically disadvan­
tageous with respect to the bottom of the lowest 
hole band. It is easy to imagine that a calucation 
of the deformation of the lattice leads to a small 
change in the coefficients b and c and cannot 
change these results significantly. It is possible 
to interp~et them thus: local states are not satis­
factory since the short-range forces and the inter­

actions of the holes with the deformations of a 

small nurr,ber of atoms cannot compenstae for the 
increase of kinetic energy occurring upon localiza­
tion of a hole. 

6. INVESTIGATIONOFTHEINTERACTION OF A HOLE 
WITH THE LATTICE BY THE PERTURBATION 

METHOD 

For the deformed crystal the wave function in 
the general case can be represented in the form 
(13), but the equations for the coefficients A(f3, k) 
are found from the variational principle by mini­

mizing j[' (14). The average Hamiltonian of the 

crystal will be 

- ~ !2k2 
G161 = A (k) 2 A (k)dk 

• [1. 
(28) 

+ ~~A (k) A (k') ~ (u;'r- u;.reifasi) 
hsi 

== '\"1 (uY _ UY ei (k'-k) a8 ; 
...::;; s, k'-k s', k'-k ) 
SL 

¥.!here all numbers nfy on the right and left are 
assumed equal, except for that one nf for ¥.ihich 
f = k' -· k. y 

The probability of scattering of a wave with 
vector k into the solid angle d n is 

W kk' = (2rr It.)/( . . . nh 

in applying the conservation conditions 

(31) 

For the thermal electrons k is much smaller than a 
vector of the reciprocal lattice; therefore, there 
will be emitted and absorbed only phonons ¥.!ith 
f rv k, bult for them it is possible to take 
I fas i I << l and expand the matrix element (30) into 
powers of fa 8 i: 

( ... nry+ I ... k ±f 1 W i k ... nfy . .. ) (33) 

= vr2N;fy {~±i(fasJ(as;U;r)(F1 +F2) 
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As a simplification we assume that for the limit 
of long waves, for the longitudinal acoustic vibra­
tions, uY II f and it does not depend on the index 

sf 
s, but wfy = c{; for the optical vibrations urf 

=- u~f II f, and wfy = canst. We neglect the inter­

action with the transverse vibrations. Then 

~ (fas;) (uJf as;) 
i 

- 1 l2 2 4 /'-.... 
=(2M) fas; ~ COS2 (fas;) = 4a;; f 1 3112M 

i~I 

and our matrix element is equal for the acoustic 
vibrations to 

+ ~ / tt. 4! I asi I (F + F ) . {V nfy + 1}' (34a) 
- V 2Njc 3Y2M 1 2 Vnfy 

and for the optical ones to 

+ ~./. tt 4/ I as;l (F + 3 F.,) {V nfy + 1 \. (34b) 
-- V '2Nwy 3 V2M 1 " V nfy J 

Thus for the probab tlity of scattering by the 
acoustic and optical vibrations we find, respec­

tive! y, 

_ [Lk' ~a~; f (F1 + F2) 2 {nfy + 1} (35a) 
W u;- - 9 "M ti2 n ' 7t" c fy 

. [Lk'~ I a5 ; 12 f2 (F1 + 3F2) 2 (nfy + 1l 
W kk' = 97t2 Mwyti2 \ nfy J ' (35b) 

tl = V IN is the volume of an elementary celL 
In calculating the mobility we assume that (l) 

the velocity of sound c is much smaller than the 
velocity of an electron, and the change of its energy 
in emitting or absorbing a phonon can be neglected; 
k'"' k, f = 2k sin ( 012), e is the scattering angle; 
(2) the temperature is not too low and for acoustic 
phonons Trw<< xT ( x =Boltzmann's constant). 
For the change of the energy-distribution functions 
as a result of collisions Eq. (35a) gives the usual 
quantity (viZ) xv, where xv is the nonsymmetrical 
part of the distribution and l is the mean free path: 

This gives the usual dependence of mobility with 
temperature: u "' T- 3 I 2 . The interaction of a hole 

with the optical vibrations of the lattice is conveni­
ently considered in two lin,iting cases: fr w 

opt 

>> Y,T and fr wopt << r,T. In the former case only 
transitions with absorption are possible, and 

k~ 2 =.2Jlwyl~"'rz· Then the ~hangeofthe dis­
tnbutwn functwns on account of scattering of the 
type (35b) gives the quantity X vI T, where 

'i: = 9,.-Mh3 wy (etiwyfxT- l)lf1.(2f1.wylh)'f• (37) 

X~ I asi [2 2[J.Wy (F1 + 3F2) 2 • 

The time of free path does not depend on the 
velocity of the hole. This gives a mobility pro­
portional to e1iwy! xT- l. 

For high temperatures, computation with Eq. 
(35b) leads to the approximations k' = k, 
{=2k sin(612); 2n+l=2xTifrw . This 
leads to the formula ( vll) X v, with y 

l = 27,.-Mh4w~ I 64[L2U i a5 ; J2 (F 1 + 3F 2)2xTk2. (38) 

The free path length is inversely proportional 
to the square of the velocity and to the temperature. 
This gives a dependence of mobility on temperature 
of the form u "-' r- 51 2 • If the exchange forces are 

more sensitive to the distance, then IF 2 1 >>IF 1 I 

and the numerical factor of the probability of 
scattering by optical vibrations differs by a factor 
9 {cl w from the probability of scattering by the 

y 'b . acoustic VI rations. 
Therefore, at high ten.peratures, the scattering 

by optical vibrations can prove to be dorr.inating. 
This also leads to a different temperature depend­
ence of the n.obility: u "' 7'"5 I 2 . At low tempera-

tures, n >> n t and fc << w ' and one must ob-
ac op y 

tain the previous formula u "' r- 3 I 2 . 

It is of interest to examine the thermo- and 
galvanoelectrical and magnetic effects, the coeffi­
cients·of which are determined from the dependence 
of the free-path length on the velocity. In the 
case of a power-law l "-' vn the corresponding 
formulas were obtained in the work of one of the 
authors 14 . As is obvious from Eqs. (36)-(38), 

essentially new results can be obtained only at 
high temperatures: x T >> fr- w , if the scattering 

by optical vibrations don1inatls. Thus, in the 
forrr.ula for the thermal emf 



K. B. TOLPYGO AND A.M. FEDORCHENKO 

the constant component is equal here to l instead 
of 3, according to the theory of Davydovand 
Shmushkevich. Since at low temperatures the re­
sults coincide, the temperature dependence of e<. 

must also change correspondingly. 
For the transverse Nernst-Ettingshausen effect: 

emf= 1/ 2 (n-l)(xT je)RaHdT jdx 

( H is the magnetic field, R is the Hall constant, 
a is the electrical conductivity} one must expect 
an increase of the coefficient ( n - l) by a factor 
of three. 

1 B. I. Davydov and I. M. Shmushkevich, Usp. Fiz. 

Nauk 24, 19 (1940). 

2 W. C. Dunlap, Phys. Rev. 79, 286 (1950). 

3 Dresselhaus, Kip and Kittel, Phys. Rev. 92, 827 
(1953). 

4 F. G. Morin, Phys. Rev, 93, 62 (1954). 

5 F. Herman, Phys. Rev. 88, 1210 (1952). 

6 D. K. Holmes, Phys. Rev. 87, 782 0952). 
7 

F. Herman and J. Callaway, Phys. Rev. 89, 518 
(1953). 

8 
T. A. Kontorova, J. Tech. Phys. (U.S.S.R.) 24, 2217 

0955). 
9 

K. B. Tolpygo, J. Exptl. Theoret, Phys. (U.S.S.R.) 
22, 378 (1952). 

10 
S. I. Pekar, J. Tech. Phys. (U.S.S.R.) 25, 2030 

(1955). 
11 S. I. Pekar and M. F. Deigen, J. Exptl. Theoret. 

Phys. (U.S.S.R.) 18, 481 0948). 
12 

A, M. Fedorchenko, Thesis, Kiev State University 
1954. ' 

13 G. Gell-Mann, Quantum Chemistry, ONTI, Moscow­
Leningrad, 1937. 

14 K • B. Tolpygo, Trudy Inst, Fiz., Akad. Nauk SSSR 
3, 52 (1952). 

Translated by C. W. Helstrom 
179 

SOVIET PHYSICS JETP VOLUME 4, NUMBER 5 JUNE, 1957 

On the Theory of the Stability of a Layer Located at a 
Superadiabatic Temperature Gradient in a 

Gravitational Field 

v. N. GRJBOV AND L. E. GUREVICH 

Leningrad Physico-Technical institute, Academy of Sciences, USSR 

(Submitted to JETP editor October 8, 1955) 

J. Exptl. Theoret, Phys. (U.S.S.R.) 31, 854-864 (November, 1956) 

The stability of a layer of liquid or gas in the presence of a superadiabatic temperature 
gradient is investigated for cases in which the upper andl lower boundaries of the layer are 
not fixed, and convection arising in it may spread into stable regions bordering it. 

1. INTRODUCTION 

I T is known that the equilibrium of a layer located 
in a gravitational field is stable if its entropy 

S increases with ehight 1• A series of authors2-4 
have investigated the stability of a layer bounded 
by horizontal planes on which the temperature is 
given and the vertical component of the velocity 
v = 0. However, in a whole series of cases, the 

z 
layer in which instability arises, causing an in-
crease of convection, is bordered on one or both 
sides by stable layers in which the temperature 
gradient is less than adiabatic, but in which the 

motion is propagated, occupying a regien consider­
ably exceeding the region of instability. The propa­
gation of convection beyond the limits of the un­
stable layer may he understood in the following 
way. 

With a random rise of a separate convective ele­
ment, a lifting force is developed proportional to 
the difference between the temperature, t'J of this 
element and that of the surrounding mediurr., and 
increases monotonically up to the upper boundary 
of the unstable layer. Therefore, the convective 
element arrives at the upper boundary with maximum 
acceleration. Above the boundary, the temperature 
differenct~, and consequently the acceleration, 

720 


