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1. Exptl. Theoret. Phys. (U.S.S.R.) 3 1, 815-818 (November, 1956) 

An approximate method is constructed for the calculation of the reflection coefficient of 
a plane electromagnetic wave from an isotropically inhomogeneous layer for media whose 
dielectric constant and conductivity depend on a single spatial coordinate, This method 
can be also applied to the solution of analogous acoustical problems. 

F OR the solution of a series of applied problems, 
it is necessary to he able to calculate the re

flection coefficient of waves from different types of 
stratified structures. An exact solution of the 
problem can he obtained only for certain individual 
regularitiesof the layers l-6 • In the other cases, we 
have to apply various approximate methods 7 •8 , 

which have definite limits of applicability. Chief 
practical interest attaches to stratified media, for 
which the optical constants can undergo discon
tinuous changes inside the layer and on its hound
aries. For such cases, it is appropriate to make 
use of the approximate method of calculation pro
posed in the present research. 

1. METHOD OF SOLUTION 

Let us consider an infinite-laminar inhomogeneous 
strip of thickness d, on which a plane electromag
netic wave is incident from the left at an angle el 
with the normal. In this case, the wave is par
tiaqy transmitted through the layer and falls on the 
second boundary of the layer at an angle e2 • Let 

us place the origin at the front boundary of the 
layer. We draw the OZ axis perpendicular to this 
boundary, to the right, inside the layer and the OX 
axis parallel to the boundary in the plane of inci
dence of the oncoming wave. 

The propagation constant of the electromagnetic 
waves in the layer depends on the coordinate z 
according to the law 

k(z) = (wjc) [n(z) + ix(z)] = (wjc)Vs• (z), (1) 

n (z) = [ e: (z) + v e:2 (z) 1 47t2cr2 (z) ]''• 
2 4 I N2 ' 

X (z) = [-~ + vr e:2(z) + 47t2cr2 (z) ]'/z 
. 2 4 (,)2 • (2) 

The dielectric constant d z) and the conductivity 
a( z) change along the layer according to some 
law. To the left of the layer is a semi-infinite 
homogeneous medium with a propagation constant 
k 1 = const, in which the incident and reflected 
waves are propagated. To the right of the layer is 

a semi-infinite homogeneous medium with propaga
tion constant k 2 = const, in which the transmitted 

wave is propagated. All three media are presumed 
nonferromagnetic, and their magnetic permeability 
is taken to be unity. Computation of the reflection 
coefficient of the wave from the layer is carried out 
separately for waves polarized in the plane of in
cidence and perpendicular to the plane of incidence. 

As a first case we consider s-waves, whose elec
tric vapor is perpendicular to the plane of incidence. 
The amplitude E = EY satisfies the equation 

The solution of Eq. (3) inside the layer is sought 
in the forn1 (see Hefs. 9 and 10) 

Ey =exp [ik (z) sin 0 (z) xJ (4) 

x [eexp [i ; ~f,(z)dz J 

+ £-exp [- i; \;,(z)dz ])· 

where e ( z) is the angle variable, defined by the 
conditions 

k (z) sin 0 (z) = k1 sin 01 = const, (5) 

and fs ( z) and F 5 ( z) are unknown functions which 
satisfy conjugate equations of first order: 

(6) 

2 • c dF 
Fs-S cos2 0+i--8 =0. 

N dz 
Solving these equations with consideration of the 
boundary conditions for the incident, reflected and 
transmitted waves, we can then determine the re
flection coefficient from the layer. 

F~r an. approximate solution of Eq.• (6), we expand 
the functwns [5 and F 5 in power series. For 
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layers whose thickness is many times greater than 
the wavelength ( d » c/ w ), we look for the solu
tion in the form of the series 

fs = ~ (cjw)m/s,m (z), (7) 
m=O 

00 

Substituting (7} in (6), we find the following ex
pressions for the coefficients of the series: 

fs.o = V s• (z) cos 6 (z) = F s,o. 

f i dln(V~ cos 6) _ -F 
s,l = 2 dz - s,b 

/s 2 = 1 f ~ [ d 1 n (V~ cos 6) ] 2 

' 4 V c:• -:os 6 \ 2 dz 

{8) 

_ d2 ln (V~ cos 6)} _ F 
dz2 - s,2 

etc. The coefficients f 0 and F 0 correspond to s, s, 
the usual approximation of geometric optics. 

For layers that are thin in comparison with the 
wavelength ( d << c/ w), the solution is sought in 
the form ofthe series 

00 

fs = ~ ((J) / c)m/s,m (z), (9) 
m-o 

00 

Fs= ~ ((J)jc)mFs,m(Z). 
m=O 

The coefficients of these series are computed by 
successive integration: 

fs,o = const, F s,o = const, 

z 

fs.1 = i ~ (s* cos2 6- f~.o1 dz, 
0 

z 

Fs,1 =- i ~ [:::* cos2 6- Fs.o] dz, 
0 

Z Z 1 

f s,2 = 2fs,o ~ ~ (:::* cos2 6- f;.o] dz dz', 
0 0 

Z Z 1 

(lO) 

Fs,2 == 2Fs,o ~ ~ [s* cos2 6- F~.o1 dzdz' 
0 0 

etc. Making use of Eqs. (8) and (10), we can com
pute the functions fs and F8 in any approximation, 
after which it is easy to find the amplitude reflec
tion coefficient. 

In the second case of the p-wave, whose elec
tric vector lies in the place of incidence, it is 
more appropriate to solve the equation for the mag
netic vector 

(ll) 

Applying the analogous substitution 

H y =exp [ik (z)sin 6 (z) xJ (12) 

z 

X {H+exp[i; ~fp(z)dz] 
0 

z 

+ H-exp [- i ; ~ F P (z) dz ]} 
0 

and expanding the functions f ( z) and F ( z) in 
p p 

power series in c/ w or w/ c, we get: for "thick" 

layers, 

f p,o = y;• (z) cos 6 (z) = F p,o• (13) 

i d cos 6 (z) 
fp 1 = -- ln .r = - F ' 2 dz r c:• (z) P,l• 

f __ f p,I [. d 1 f p,1 ] 
p,2 -- v- t dZ n ----e* - f p,1 ; 

p,O 

_ FP,1 [ · d Fp,1 ] Fp, 2 -~ -tiiiln~- Fp,1 , 
p,O 

and for "thin" layers, 

fp.o = :::* (z) = F p,o. (14) 

z 

fp,1 =is* (z) \ [cos2 6 (z)- :::* (z)] dz =- F 
.) p,b 
0 

z z' 

f P,2 = 2:::* ~ :::* (z') ~ [cos2 6 (z) 
0 0 

- :::* (z)J dz dz' = F M· 

For the analogous acoustical problem, the pres
sure in the layer satisfies the equation 
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d2p _ d ln p dp + ~ n 2 = 0 (15) 
dz2 dz dz c2 P ' 

3 

where the density p ( z ), the sound velocity c s ( z ), 
and the relative index of refraction of the medium 
n ( z) are given as functions of the coordinate z, 
perpendicular to the surface of the layer. 

Introducing the similar substitution 

z 

p = p+exp [i -~~ cp(z)dz] 
(16) 

0 

z 

+ p- exp [- i ~ ~ cp (z) dz J, 
0 

we can, in the same way as for electromagnetic 
waves, derive the differential equation for the 
function cp( z ), expand it in a power series in 
w/c or c /w, and find the reflection coefficient 

s s 
from the entire surface. 

In practice, we can limit ourselves to 2-3 first 
terms of the corresponding series. In the inter
mediate region ( d "' ,\), we can make use of inter
polated expressions for R which consist of cal
culated limiting formulas. 

2.EXAMPLE 

For a layer law 

n (z) =- 2df z (17) 

with boundary conditions: n = n = 1 for z < -2 d 
1 - ' 

and n = n 2 for z ?. -d, the problem has an exact 
solution. Calculation of the energy reflection co
efficient for the normally incident electromagnetic 
waves yields the exact expression 

R.0 (x) = (1-0,56x2)/(9-0.56x2) 
(19) 

for x < 1, 

R.oo (x) = sln2 [2x ln 2- ln 2 1 16x] (20) 
16x2 - cos2 [2x ln2 -ln 2j16x] 

for X;>- 1. 

Numerical computation according to these equa
tions shows that over the whole range of values of 
w d/ c, the divergence between the exact and the 
approximate formulas for ...j R ( x) lies on! y in the 
third decimal place. Moreover, both expansions (in 
powers of x and of 1/x) give neighboring values 
even for x "' 1. 

In those cases when our expansion in powers of 
x and 1/ x diverge strong! y in the region x "' 1, we 
must compute these series with higher order ap
proximations for the region x"" 1. We then use 
interpolation formulas of the type 

R. (x) ~ [R.0 (x) + xR.oo (x)] / ( 1 + x). 
(21) 
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