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The equations which describe synchrotron oscillations in strong focusing accelerators 
are examined, taking into account the relations between the field and the frequency. A 
general solution is found which describes the oscillations both in the adiabatic and in the 
critical region and the corresponding integrals of motion are obtained. It is shown that the 
motion in the critical region can be simply described by means of the "effective frequency" 
of the oscillations, The effect of fluctuations of the radio frequency, of the accelerating 
voltage and of the magnetic field is considered, along with the question of the influence of 
noises on the synchrotron oscillations, The transition through the critical point is studied. 
The computations are carried to the point of the derived formulas which determine the 
tolerances for the corresponding fluctuations. 

(3) 1. EQUATIONS OF SYNCHROTRON OSCILLATIONS 

A CCELERATED particles acquire energy under 
the action of a high-frequency electric field, 

the frequency of which is equal to, or exceeds by 
an integral number of times q, the frequency of 
circulation of the particles in the annular chamber 
of the accelerator. We shall call the quantity q 
the multiplicity of theradio frequency. 

where ~w is the radiofrequency deviation and 
p 

~w is the deviation of the frequency of revolution 

Let us examine the acceleration of particles 
which have a charge e. Let the maximum energy 
acquired per revolution of the particles he eu. 

We designate as equilibrium particles those 
which maintain a constant phase shift relative to 
the accelerating electric field. Denoting the 
length of the trajectory of the particles by L and 
noting that the average field intensity (along the 
chamber) is equal to u/L, we find for the change 
in momentum of an equilibrium particle 

dp;'dt = eu sin ¢/L, (l) 

where ¢ is the phase of acceleration of the equi­
librium particle. 

We characterize nonequilibrium particles by the 
deviation of their momentum and phase from the 
momentum and phase of equilibrium particles, and 
introduce the notation n and cp for these deviations. 
Then, for small deviations, 

diT;'dt = (eu cos ¢/L) <p + (e sin ¢/L) Llu;'u, (2) 

where the term containing ~ u takes into account 
the deviation of the amplitude of the accelerating 
voltage from the ideal value. 

For the deviations in phase we have the obvious 
equality 
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of the particles from the ideal value. 
We introduce the coefficient u. which takes into 

account the lengthening of the trajectory which is 
related to the deviation of the momentum, 

~LjL = rxiTjp. (4) 

It is not difficult to convince oneself that 

where E is the total relativistic energy of the 

particles, E 0 is the rest energy, H is the magnetic 
field intensity and 

w = (21tc/L) pcjE. (6) 

From Eqs. (2), (3), (5) and {6) we find 

!!:_ [ E drpj + 2rtqc2eu cos rh {7) 
dt (E0!E)2 - rx d t L2 <p 

= ~ [ (Eo!E~2- a; Llwp J 
2rt 2 • flu 

-L2 qc eusm¢ u 
_ 2rtqrxc .!!:___ [ (£2- E~)' 1• t::.H] 

L dt (E0jl::.)2 - rx H • 

In studying Eq. (7) one should keep in mind that 
~wp and ~H, generally speaking, are not inde­
pendent quantities. If the frequency of the ac­
celerating field follows behind the magnetic field, 
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the deviations ~wP are partially related to in­
accuracies in the electronics and partially caused 
by oscillations of the magnetic field. It is natural 
to examine these latter together with the term 
which depends on ~H/H. Let the system of 
coupling the frequency with the field be character­

ized by the delay T, so that instead of the ideal 
rule 

(8} 

the rule: 

occurs. The letter R denotes the radius of curva­
ture of an equilibriun particle in the field H. 

We will be interested chiefly in harmonic os­
cillations of the type ~H = H w sin wt. From Eq. 
(9) we find 

~w = 2m:2q pE~ H w sin wt- WT cos wt 
P L/:. 3 H 1 + w 2T 2 

(lO) 

Let us substitute this expression in Eq. (7) and 
combine it with the term which depends on ~ li/H, 
keeping the notation ~ w for deviations which are 

p 

associated only with the electronics. We further 
note that oscillations of the magnetic field are ex­
cited by oscillations of the voltage V which sup­
plies the magnet. Disregarding the effective resis­
tance of the magnet windings in comparison with 
their inductive reactance, we find 

Hw/ H = (li fwH) VwiV (ll) 

= (eusin¢1Lwp)VwiV. 

Then Eq. (7) assumes the form: 

~ [ 7: - ~J :t [ (£0;£~2 - rt ~; J + D~cp (12) 

where 

(13) 

Let us introduce in place of tlie time the inde­
pendent variable x, defined by the equation 

(14) 

We assume that the momentum (and the magnetic 
field) increases linearly with time, so that the 
right-hand side of Eq. (l) is constant. From Eq. 
(l) we have 

dx I dt = ceu sin¢ 1 £ 0L. (15) 

We also introduce the quantity 

a 2 = (I - ~)/ ~ = 1 1 ~ (16) 

and the function 

(17) 

(In strong focusing accelerators u. << l.) In the 
new variables, Eq. (12) has the form: 

f (x) _r!_ [-1- df!( J n 2 
dx f (x) dx + x<? (18) 

WT COS WX ] V w 

- (1 +x2)'1• f(x) V · 

In writing Eq. (18) it was taken into account that 
in practically-important cases 0. fl~ T 2 << l. If 
this is not so, then to coswx the term (E/E 0 )

2 

x a. w --c sin wx must be added. The following nota­
tion is introduced in Eq. (18): 

Dx = Dtdl I dx = D0 J f (x) J'l•, (19) 

n~ = 2rrqEo ctg ¢I eu sin¢. 

no is a dimensionless quantity numerically equal 
to the frequency in x, for x = 0. 

The equation for free oscillations is obtained 
from Eq. (18) if the right side is equated to zero: 

f d [ 1 df!( J 2 (x) dx- f (...:) dx + Dx·P = 0. (20) 

Equation (18) has a regular singular point for 
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x =a, when f( x) becomes zero. After the singular 
point f ( x) changes sign and the motion remains 
stable only in the case that [12 , proportional to 

X 

f(x ), does not change sign; for this it is neces-
sary to change the phase of acceleration from ¢ to 

7T- ¢. 
In the transition through the critical point it is 

possible to define positive deviation of cp in differ­
ent ways. It is natural to define it so that during 
this transition cp be continuous. The momentum II 
in the critical point likewise remains continuous. 
These two conditions determine the transition 
through the critical point, where d cp/ dx changes 
sign. 

2. FREE SYNCHROTRON OSCILLATIONS 

We introduce new variables 
X 

v = cpn;'1•, '1> = ~ O.xdx (21) 
a 

tjJ has the obvious sense of the phase of oscillation. 
Tn these variables Eq. (20) acquires the form: 

(22) 

In cases of practical interest, 0 0 is a very large 
quantity; no >> 1, so that the terms which are 
added to unity in Eq. (22) are essential only in 
the vicinity of the point x = a, wher~ f ( x) be­
comes zero. In this region they can be expanded 
in a series, from which we retain only the principal 
term. Although such a representation becomes in­
adequate even for I x - a I "' 0.4 a, the entire cor­
rection to unity becomes so small here that it 
does not play any role. In the vicinity of the point 
a 

f (x) :::::o 2a-3 ll- xja J. 
(23) 

Eq. (22) assumes the form 

The solution of Eq. (24) is: 

where f 1 and] 21 are Bessel functions. Re-
2 3 - 3 

verting to the variable cp we find: 

The signs in front of C 1 and C 2 do not depend 
on which side of the critical point we are on. This 
follows from the continuity of phase and momentum 
in the critical point. We note that Bodenstedt2 , who 
was studying the transition through the critical 
point on a mechanical model, arrived at an incor­
rect conclusion concerning a change in sign of C 

2 
(see Fig. 10 in Ref. 2 ), which is explained by the 
properties of his model. For large arguments (the 
adiabatic region) one can use the asymptotic repre­
sentation of the Bessel functions: 

rp = (2/TC)'I• (O.x/0.0)'1• [C1 cos (y + 7tjl2) (27) 

+ C2sin('Jl-7t/l2)J. 

For a sufficiently small argument (I x- a I<< 0.4a), 
one can express 1/J by means of Eqs. (19), (21) and 
(23) through the deviation from the critical point 

e=lx-al: 

rp= 2'1·a-1 Q~~h ~[C1J_,1,(Q'~h0•) (28) 

+ C2J•t, (0.~££ ~'lz)J, 

'I -'1 " -'/ Q eff = 2. 3-'/,Qo •a • :::::::; no·a .. (29) 

Equations of the type of Eq. (28) we obtained by 
Kolomenskii andSabsovich4 and by Johnson5, 

To facilitate the transition from one region to 
the other, the constants in Eqs. (26)-(28) were 

chosen so that C 1 and C 2 agree in these equa­
tions and thus are integrals of motion. 

Let us examine in greater detail Eq. (27) which 
describes the phase oscillations in the adiabatic 
region. The instantaneous frequency of the syn­
chrotron oscillations in X is equal to dtjf/dx = Dx. 
The amplitude of the oscillations decreases on 
approach to the critical point and increases on 
going away from it, varying as ( n;n 0) Y. = Jil 4. It 
reaches a maximum of 0.6a- 314(Ci + C~- C1C2) 

when x = ( 3a 2 + 2)Y.. 

Equations (12) and (18) are obtained from Eqs. 
(2), (3) and (5) through elimination of the momen­
tum 11. With the same success it would be possi­
ble to eliminate the phase from them and to obtain 
the equation for oscillations in momentum. In­
stead of this we indicate the conversion to momen­
tum directly in the solution. Converting to the 
variable x in Eq. (2) we obtain 

X X 

n = _[io_ ctg¢ \ ~dx + ~ \ t:.u dx. (30) 
C .\• CJU 

x, 
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FIG. 1. Graph of the function y f( x ). 

It follows from Eqs. (27) and {30) that the ampli­
tudes of the oscillations in momentum and phase in 
the adiabatic region are connected by the relation 

Au I Arp =Eo ctg cp I cnx. (31) 

such that in this region 

II (x) = (; r· Eoc~! d> ( g; )'/• [ C1 sin ( q> (32) 

The function Ox/00 , which enters in Eqs. (27) 
and (32) is depicted in Fig. l. For the critical 
region we obtain: 

11 (~) = ( ! yl· (33) 

C J (Q"/z ""/")] 
- 2 - 1/a eff ~ • 

From Eq. {32) it is seen that the amplitude of the 
oscillations in momentum increases on approaching 
the critical region. Further on, close to 
x = { 3a2 + 2)Yz, the amplitude falls, then rises 

again roughly speaking as x 11 4 • We note that 
for the point x = a, there follows from Eq. (33): 

TI (a) ~ 0.8£0C2 ctg cpfc (D.0Qe££ )'t.. (34) 

Comparison of Eqs. (32) and (34) shows that the 
oscillations in the critical region have the "effec­
tive frequency" neff' specified by Eq. (29). Com­
parison of Eqs. (27) and (28) leads to practically 
the same value for 0 eff" This effective frequency 
enters in almost all tolerances in the critical 
region. 

Here, the calculations lead to the following re­
sults, which are unexpected at first glance. In the 
calculation of tolerances connected with forced os­
cillations in the critical region, one can assume 
that, in the region indicated, regular harmonic os­
cillations .occur with constant amplitude and con­
stant frequency numerically equal to the "effective 
frequency." Although thereal picture is essen­
tially more complicated, such a calculation leads 
to correct answers (within an accuracy of the 
order of 20% ). 

Of interest for a beam of particles is the value 
of the mean square deviation in phase and momen­
tum which is especially essential for an examina­
tion of noise modulations (see Sec. 6 ). 
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We write Eq. (27) in the form 

9 ='-' al cos tjJ + b1 sin tjJ, (35) 

a 1 =(~-t·( ~ r·rclcos 1~ -C2sin ~-], ( ) 

b = (~)l'•(_g_)l'· [ 7t • 7t J 36 
1 rr Oo C2 COS 12- C1 Sill -Ii . 

For a beam of particles one can write 

a1 =A cosx; b1 =A sinx, (37) 

where A and X are an arbitrary amplitude and phase. 
Averaging over A and X we find: 

(38) 

From Eq. (36) it is easy to obtain Ci = C~ = 2C 1 C 2 , 

such that 

(39) 

Comparing the mean square deviations of the 
momentum in. the critical point and in the adiabatic 
region, we find 

(40) 

3. ELECTROTECHNICAL AND RADIOTECHNICAL 

TOLERANCES. 
( NONRESONANCE CASE) 

In estimating tolerances, oscillations of the 
parameters which occur with a frequency close to 
the instantaneous frequency of the synchrotron 
oscillations are especially effective. It is natural 
to examine such perturbations separately. Faster 
oscillations present no danger, since they are 
rapidly averaged out. Let us consider abrupt 
changes in w (a step function) and slow varia­
tions (in com~arison with the frequency of the 
free oscillations) in ~ w , ~u and ~ V. 

a) Tolerances associgted with jumps in w 
p 

In order to find the swing of the oscillations as-
sociated with jumps in wP, we integrate Eq. (18) 
over the period of a jump. Considering that before 
the jump cp = cp' = 0, we get 

Thus, a jump in w gives rise (in the adiabatic 
p 

region) to the appearance of oscillations with 
amplitude 

In Eq. (42) the variable x pertains to the moment 
of the jump. Furthermore, this amplitude will 
vary according to the general formula, i.e., as [ 114 

The effect of the jumps in w becomes all the 
p 

stronger on approaching the critical region. It is 
not difficult to find an estimate in the immediate 
vicinity of the critical point, where the Bessel 

functions are approximated closely by the first 
term of a series expansion. It is just as easy in 
this case to convince onself that 

(43) 

so that the tolerance in the magnitude of the jump 
becomes very inflexible. One should have in mind, 
however, that in this case changes in wp, which 
are rapid in comparison with changes in 1/ ~' 
should qualify as jumps, so that the rigid restric­
tions apply only to extremely sharp changes in w , 
which are not very substantial in practice. By P 

means of Eq. (31), we obtain the amplitudeof the 
oscillations in momentum excited by a jump in wp: 

(44) 

b) Tolerances associated with slow variation of 

~wP, ~u, ~ V. 
The effect of smooth (in comparison with the 

free oscillations) changes in ~wp• ~u/u, ~V IV 
is easy to take into account, considering the right­
hand side of Eq. (18) constant and finding the 
shift of the equilibrium point of the oscillations. 

d r x Q~ Aoop] Au (45) 
<p = tg ¢ dx (1 + .x2)'1z n; (J}p - tg¢ u 

t 1 d . W"l" COS WX QO · V w • [ 2 1 
- SlllWX- - -+ g ¢ w (1 + w 2 , 2) dx (1 + .x2)'!• n; j v · 

For the maximum deviation of the momentum v.e 
find: 

(46) 

[sin wx 

W"l" COS WX Q~ J V w 

(1 + xz>"'• n; v · 
Strictly speaking, Eqs. (45) and (46) are applied 
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only for the adiabatic region. As was pointed out 
above, however, in the critical region one can 
simply replace nx by neff' which is corroborated 
by accurate calculations. Then, denoting the 
allowable deviation in phase and in momentum by 
~ cp and ~II, we find for the critical region: 

~~~~ ~n 

= (UTI/ p) [eu sin¢/ 2rrqE0 ctg ¢ J''· [E0 / E crJ'I,, 

~~~~ ~ 

= (~cp/tgrp) [eusin ¢ j2,--:qE0 ctg ¢]''•[E0 / EcrJ'Ia. 

4. THE TRANSITION THROUGH THE CRITICAL POINT 

As was pointed out above, the transition through 
the critical point requires a change in the phase 
of the acceleration from ¢ to 7T - ¢. This switch­
over cannot be realized precisely at the moment 
when an equilibrium particle reaches the critical 
point; there must always be some discrepancies, 
which we shall characterize by an error T1 in the 

switchover time. During this time n; in Eq. (20) 
is negative, which corresponds to defocusing of 
the particles. We shall assume, for definiteness, 
that the phase of the acceleration is switched over 
later than it ordinarily should be. (By virtue of 
the symmetry of the equations about the critical 
point, the answer does not depend on this assump­
tion.) Then the equation of the phase oscillations 
in this region takes the form: 

- (2''· I ) r.·'/, ~ [C ·''•J ( ·r.'f~- ~"·) cp - , a ~~·eff ' 1l -'Ia l~~-eff ., (49) 

where C 1 and C 2 have those values which they had 
up to the critical point. In the moment ~ g the 
solution Eq. (49) goes over to the solution Eq. (28) 
with different constants. Having denoted the cor­
rections to the corresponding coefficients by ~ C 1 
and ~ C 2 , we find for small values of~ g: 

f1C2/C1 ~ 20eff !1~, (50) 

It is natural to require that~ C lC 1 and ~C /C 1 
be small, let us say about 0.1. Then 

(51) 

and for the error in time (in seconds) 

(52) 

X (Ecr / Eo)'1•E0Ljceu sin¢. 

Let us now estimate the disturbances which orig­
inate from the phase of the accelerating voltage 
not switching over instantaneously. We assume 
that the accelerating voltage is at first switched 
off and is switched on after the time T2, already in 
the second phase. During the time T2 , the parti­
cles travel by inertia, not being accelerated. It 
would appear natural to assume, in this case, that 
the coordinate x does not vary. The calculations 
turn out simpler, however, if we assume x to vary 
according to the old rule. Hereupon, the continu­
ous increase of the magnetic field and the change 
of frequency of the accelerating voltage will be 
properly taken into account. We assume for defi­
niteness that the switching off of the accelerating 
voltage occurred after the transition through the 
critical point. The equation of motion can be ob­
tained by Eq. (18) if we take ~u/u = -l and can­
cel the term n; cp. 

Then 

(53) 

Integrating Eq. (53), having used the representa­

tion of Eq. (23) for f(x ), we find: 

(54) 

+ 2tg¢Q~a-4 W/a~- 1/2~o) ~2 + 1 /6~~], 
q/ = ~~;;-1cp~ + 2 tg¢Q~a-4 [~- ~0 ] ~, 

where g0 is the moment of switching off the ac­
celerating voltage and g is the moment of switch­
ing it on. At the point g this solution must be 
connected with the solution Eq. (28), which also 
determines the changes in the constants C 1 and 
C 2 • For small values of ~g= ~x, neglecting 
cubic terms in comparison with linear terms, we 
obtain: 

(55) 

Knowing ~C 1 and ~C 2 , it is easy to determine the 
increase in amplitude of the oscillations at the 

2 y, most dangerous point x = ( 3a + 2) 2 • 

Inasmuch as a deviation of the momentun, is ef­
fective precisely in the critical region, where the 
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natural oscillations reach a maximum, it is useful 
to calculate, by means of Eq. (55), the shift in 
the momentum common for all particles: lli1/P 
= llx/ a, which gives 

"2 =(~II I p) (E-cr I E0 ) E0L I ceu sin cf>. (56) 

Kolornenskii and Sabsovich4 and apparently, John­

son 5 , also dealt with questions related to the 
transition through the critcial point. 

5. RESONANCE 

The frequency of the generator, the magnitude of 
the accelerating voltage and the voltage on the 
magnet can oscillate with a frequency equal to the 
instantaneous frequency of the phase oscillations. 
In this case a resonance arises, which leads to a 
strong wave of oscillations. 

Accordingly, we shall examine resonance har­
monics of the right-hand part. By virtue of the in­
coherence of the perturbations, one can examine the 
terms which enter into the right-hand part separately. 
In the adiabatic approximation we write Eq. (18) in 
the form 

(d2cp I dx2 ) + n;cp = d cos (wx +IX), (57) 

where (),. is the phase of the perturbation. The solu­

tion of Eq. (57) without the right-hand part can be 

represented in the form 

(58) 

We impose on cp1 and cpl the supplementary condi­
tion: 

(59) 

Having usedEqs. (58) and (59), we obtain forthe 
principal part of cp 1 

X 

(!J = _d_ \ ei(tvx-<j!+cx)dx 
d 4i0x J . 

x, 

(60) 

Expanding the frequency nx in a series at the reso­
nance point, we obtain 

Then 
• X-Xpe3 

det 13 \ 
t.pl = 411x ) exp {- iD~eaZ2/2} dz. (62) 

Xo-Xpes 

Taking X- xres = ""• x 0 - xres = -oo and integrat­
Ing Eq. (62) we obtain for cp: 

Averaging over the arbitrary phase y, we find for 
the square of the phase amplitude 

(64) 

Comparing Eqs. (57) and (18) and taking into ac­
count the change in the amplitude of the oscillations 
with frequency, we find finally: 

(65) 

flcp2 = 'it tg2"' ~ n;es (~n )2 
-r /t' 1 0 2 u • res 0 

-- n n2 
~' 2 ='itt 2cp __ x_ res 

cp g If I !12 (1 + !12 -r2)2 
":es1 0 res 

Here, wn, un, V n are the amplitudes of the per­
turbations with frequency n; 

00 

~w = ~ w0 cos (Ox+ IX). 
0 

This result is found to be in agreement with the re­
sult of Blachman 1. Eqs. (65) give the increase of 
the mean square amplitude of the phase oscillations 
at any moment, if by Dx we understand the instan­
taneous frequency of the oscillations and by n res 
the resonance frequency, whose effect we are 
studying. Equations (65) do not have any singulari­
ties in the neighborhood of the critical point, which 
is natural, since on approaching the critical point 
the resonance is passed all the more rapidly and 
does not have time to set synchrotron oscillations 
going to any appreciable extent. Therefore, the 
critical region does not require special considera­
tion. One must have in mind that the resonance fre­
quencies are included between n0 and neff" At 
the point where the rate of change of frequency be­
comes zero [ x = ( 3a2 + 2) y, ), the next term in the 
expansion must be taken into account. In this 
case: 

~92 = 4,4 tg2¢D~' 1•a' 1• (cvn f w) 2 , 

~t.p2 = 1,7 tg2 cf>D~1 'a-' 1 • (uo.lu)2, 

~cp2 = 1 '7 tg2 cf>D~/,a-'1. (V n I V)2. 

(66) 
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The oscillations in momentum which reach a maxi­
mum in the eritical point merit special examination. 
Variation of the momentum is expressed by Eq. 
(34), taking into account Eqs. (39) and (65). 

6. NOISE EXCITATION OF SYNCHROTRON 
OSCILLATIONS 

The problem of noise excitation of ocsillations 
without account of adiabatic damping was solved 
by Blachman, who examined Eq. _(12) in the adia­

batic approximation, i.e., in the form 

(d'f2 I dt 2 ) + Q~'f = F (t), (67) 

where F( t) is an arbitrary noise perturbation with 
spectral intensity Q:l (calculated for a band-width 

of l_ c~cle ). According To Ref. l, the mean square 
dev1atwn of the phase amplitude is equal to 

t 

q;2 = lf2 ~ (<D jQ~)dt. (68) 

t, 

Comparing Eq. (12) with Eq. (67) and transforming 
to the variable x, we obtainfor the noise modulation 
of the frequency with spectral intensity v ( cycles 2 / 

cycle) 
X 

;o2 = (2:r2E0Lfceusin¢)~ 'ldx. (69) 
x, 

1/17 50 

FIG. 2. Graph of the function f y,(x)! ry, (x) dx. 
0 

For the noise modulation of the amplitude of the 
accelerating voltage f'l.u/u with spectral intensity 
Tf( cycle- 1 ) 

X 

~ = 1/2 tg2 </:> (ceu sin¢/ E0L) ~ 'YJQ;dx 
(70) 

x, 

and for the noise modulation of the voltage on the 
magnet/'). V/V with spectral intensity f1( cycle-l) 

We now find the expression for cp2 accounting 
for the adiabatic change of amplitude of the oscilla­
tions. From the relation Eq. (27) for the mean 
square amplitude we obtain the equation 

dq;2 I dx = q;2f' 1 2f. <n) 

On the other hand, differentiating Eq. (69), we ob­
tain for the increase in amplitude on account of the 

noise modulation of the frequency 

d;o2 / dx = 27t2 (E0L / ceu sin¢) v. (73) 

On account of the independence of the processes of 
adiabatic contraction and of noise excitation, there 
follows from Eqs. (72) and (73): 

d - E L f 'l• (x)- [j-'1• (x) m2 ] = 27t2 0. v. 
dx T ceu sm qJ 

(74) 

Integrating Eq. (74), we obtain: 
X 

Eo~ .· f'l• (x) I J-'1• (x) dx. 
ceusmo · .\ 

(75) 

x, 

Analogously, for the noise modulation of the ampli­
tude of the accelerating voltage 

x, 

and for the noise modulation of the voltage on the 
magnet 
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r:! = 1/2 tg2¢fl ce~.:~n rb n~j'f•(x) ~ k''•(x) 
x, 

(77) 

n~, 2 ,1 J dx + (1 + x2)3 j- • (x) (1+Q2,2)2 . 

In Eqs. (75) through (77), it is assumed that the 
valuesof the spectral intensities v, TJ and !l do not 

depend on the frequency: These formulas determine 

q;z- in the adiabatic region. Inasmuch as the ef­
fect of noises decreases on approaching the criti­
cal region, they can he used during the entire 
cycle of acceleration. 

The mean square deviation of the momentum in 
the critical region is of interest. It can he calcula­
ted by Eqs. (34) and (39) on substituting for 

cp2 from Eqs. (75) through (77). 
In conclusion, we present graphs of the functions 

which enter in Eqs. (75) through (77). These func­
tions are evaluated for several positive- and for 

one negative-value of a 2 • Negative values of a 2 , 

characteristic forstrong focusing accelerators with­
out a critical energy, were proposed by Vladimir­
skii and Tarasov3 • 

1 N. M. Blachman, Rev. Sci. Instr. 21, 908 (1950). 

2 E. Bodenstedt, Ann. der Phys. 15, 35 (1954). 

3 V. V. Vladimirskii and E. K. Tarasov, On the Possi­
bility of Eliminating the Critical Energy in Strong­
Focusing Accelerators, Report presented at the Inter­
national Conference on Peaceful Use of Atomic Energy, 
1955. 

4 A. A. Kolomenskii and L. L. Sabsovich, On the Pass­
age Throu.gh the Critical Energy in a Strong-Focusing 
Accelerator, Unpublished Report, 1953. 

5 K. Johnsen, Lecture before the Conference on Strong­
Focusing Accelerators, Geneva, 1953. 
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A Comparison of the Fermi-Landau Theory with 
Some Experimental Data on C4)Smic Rays 

0. A. GUZHAVINA, v. v. GIZHAVIN AND G. T. ZATSEPIN 

P. N. Lebedev Physical Institute, Academy of Sciences, USSR 

(Submitted to JETP editor August .20, 1955) 

J. Exptl. Theoret. Phys. (U.S.S.R.) 31, 819-830 (November, 1956) 

The energy spectra of the secondary particles originating in nuclear collisions of high­
energy particles ( 1012 _ lQ18 ev) have been calculated on the basis of the theory of L. D. 
Landau. A calculation of the altitude dependence of the radioactive particles in the atmos­
phere, as well as of the number of high-energy ll-mesons at sea level, has been carried out 
on the basis of the spectra obtained. The results of the calculations are compared with ex­
perimental data. 

u P to the present time there have been few di-
rect experimental data concerning collisions 

of super-high energy nucleons ( > 1012 ev) with 
nucleons or light nuclei. There exists practically 
no knowledge of the distribution of energy between 
the secondary particles of various types formed as 
a result of such collisions. Hence, in spite of the 
considerable time since the publication of the 
Landau theory 1, there have been, up to the present, 
almost no papers devoted to a comparison of the 
results of this theory with experimental data. How­
ever, although direct experimental data relative to 
the energy distribution of secondary particles in 

the energy region E > 10 12 ev are lacking, we never­
theless have indirect experimental data relative to 
the formation of secondary particles of super-high 
energy. For example, in the works of Ryzhkova 
and Sarycheva 2 , and also Kaplon et al. 3 , the co­
efficient of absorption is measured in the atmos­
phere of radioactive particles with energy > 1012 

ev. More:over, there exist data relative to the 
number of ll-mesons4 penetrating a depth of the 
earth of as much as 3 km of water equivalent, i.e., 
possessing energies of the order of 3 x 1012 ev. 
As the calculations show, these data are very 
sensitive to the mechanism of the elementary act 
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