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points r 1 ( t) and r2 (t) then r. the energy loss of 

the pair in a unit of time, is 

(1) 

where cv 1 and cv 2 are the speeds of the positron 

and electron, and E is the electric field of the 
pair. The last can be considered as a field in the 
macroscopic realm caused by charge densities p 
and currents j, 

• P = ei) (r- ri (t))- ei) (r- r 2 (t)); 
J = ec {vi 8 (r- ri (t))- v2i) (r- r2 (t))} 

and can be presented in the form of the following 
Fourier integral 

E (r, t) = (ie I 27t2) ~ d k {eik (r-r,) [vi (kvi) 
(2) 

- k I~ (kvt)} I [k2-(kv1) 2 ~(kv1)] 

- eik (r-ro) [v1 (kv2)- k I~ (kv2)] I [k2 - (kv2)2 ~ (kv2)]}, 

where € (cu) is the dielectric constant of the medium 
corresponding to a frequency cu. In the derivation 
of the (2) the trajectories of the particle being 
scattered in the medium can be considered as 
straight line segments for regions in which slowing 
down is still important. 

Substituting Eq. (2) into Eq. (l) we obtain 
T = 2T0 - T 1 , wbere T 0 is the ionizational 

slowing down of a single electron, and T 1 is the 

interference term 

In the calculation of T 1 it is important that 

the transverse component oft he pair separation 
be larger than the parallel component. Indeed the 
last is proportional to v 1 - v 2 "-' (me 21 E) 2 while 
the first. is determined by the angle of separation 
of the pair () "-' mc 2 IE and by the multiple scat
tering angle. Therefore, having selected the Z 
axis along the direction of v 1 or v 2 , ¥.e can sub-

stitute k x s for k (r 2 - r 1 ) in the exponent, where 
s = (x 2 -x 1 ). After this the kz integration can he 
carried out in the same way as done by Landau in 
the calculation of T 0 • It turns out that the limiting 
expression for £ for high frequencies is of impor
tance in the integral, € = 1-..\ 2c 2 I cv 2 where 
..\2 = 41Tnc 2 ;-;,_c't., and n is the number of electrons 
in the unit volume. We obtain 

2).2 ~ cos k s T _ !:.!!..__ x dk dk = 2e2cl.2 Ko (s/.),(3 ) 
. I- 7t k: + k~ + A2 X y 

where k 0 is the corresponding cylindrical function. 

The convergence of this integral is shown by 
the fact that the interference effects depend on 
large distances for which the macroscopic view
point is valid. The analogous integral for T 0 , 

as is known, diverges and must he limited by 
some maximum value of the transverse wave 
vector Kn which is related to the energy En trans-

mitted to the atomic electron. 
For large s (s..\ >> 1) the interference term 

disappears, as can he seen from Eq. (3). For 
small s (s..\ < < 1 ), one can use the relationship 
k 0 (z) = ln (2lyz }, where y = ec =1.781. Then 

T1 = 2e2c1.2 ln (r max Is), 

where r max = 2ly..\. 

If T0 is written in analogous form (see, for 

example, Ref. 2) 

T G =ce2).2 ln (r max I r min)• rmln =a (tL! me) Jl mc2 1 Em 

(a = 1.85 }, then T can he written in the following 
form obtained in Ref. l. 

T = 2T0 In (s/r min) I In (r max I r min). (4) 

Entering into r min is the quantity Em which is the 

maximum energy transmitted to an atomic electron 
as determined from experiiiE ntal data. We would 

like to express our thanks to L. D. Landau for dis
cussion of the results. 
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T HE properties of the nucleus with a respect 
to photons of high energy (for kR ~< 1, where 

k is the wave number of the photon, R IS the 
atomic radius) can be characterized by a complex 
index of refraction n + ix./ k , where n is approxi
mate! y 1 and x. R < < l. The magnitude of .the 
absorption coefficient x. can be expresse~ m terms 
of general formulas in terms of the expenmentally 
determined cross section for photo-meson pro
duction on nuclei: 

(1) 

The existence of absorption must lead to strong 
scattering of photons. Using general diffraction 
relations for polarized nuclei I it is easy to show 
that the cross section for scattering as is 

(2) 

The scattering amplitude at small angles e is 
R 

f (6) = ikY.. ~ lo (k6 V RZ- s2) s2 ds, 

0 

from which we find for the differential cross section 

dcr8 I do= 1/ 2 as (kR) 2 <t>2 (kR6), 

<t> (x) = x-2 (x-1 sin x- cos x). 
(3) 

In agreement with the experimental data 2 at. 
photon energies of the order of 300 mev, a c Is 

approximately 10-28 A cm 2 • In this case the scat
tering cross section must be 

as= 10-ao c.u2 for Be, as= 0,9·10-28 CM2 for U. 

Let us compare the diffraction scattering with 
scattering of photons by a Coulomb field. The 3 
cross section of the last ay forE >> mc 2 is equal 

to 2 
cry= 8,5·10-35 Z 4 em. 

Thus the ratio as / ay changes from 50 for 3e to 
10- 2 for U, that is for heavy nuclei the diffraction 
scattering is considerably smaller than the coherent 
scattering by the charge. Nevertheless, it must 
appear as a consequence of a different angular 
distribution. In agreement with Eq. (3 ), diffraction 
scattering is effective at an angle es '"'"' 1/kR while 

scattering by the Coulomb field is concentrated in 
the region ey'"'"' mc 2 /E. Therefore, forE= 300mev, 
the differential cross sections for U are comparable 
fore= 0.015, after which day! de rapidly decreases, 

while da3 /de remains in this region at a constant 

value which is equal to 0.8 mb (es = 0.09 ). 

We would like to express appreciation to K. A. 
Ter-Martirosian for discussing this problem. 
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B RUECKNER 1 has examined the problem of the 
scattering of a particle by a system of two 

scatterers with zero-range forces [the scattering 
from each of these centers is spherically symmetric 

and is characterized by the amplitude 7] = ( l/k) 
x sino eiO, where o is the phase of the S-wave at 

infinity]. For the scattered amplitude in this prob
lem, we obtain the following expression: 

1 ({}) = ( 1 _ '1)2 e::R )-l [ '1) (/(k,-k)rA + ei(k,-k)rs) (l) 

+ 2 eikR ( l(k,rA-krs) + i(k,rs-krA) >] 
'1) }( 2 e e , 

where k0 and k are the wave vectors before and 

after scattering, r A and r 8 are the radius vectors 

of the scattering centers, and R "' IrA - r 8 1. 
From this expression, Brueckner, using a well

known theorem relating the imaginary part of the 
scattering amplitude in the forward direction with 
the total cross section, obtains the latter. Com

paring this expression for the total cross section 

with the corresponding one obtained with the aid 
of the impulse approximation, the author shows that 
the difference between these two expressions be
comes insignificant not for R '"'"' oo, but foro-+ 0 
(for simplicity, it is assumed that the amplitude 7] 

is the same for both scatterers ). From this the 
conclusion is reached that the use of the impulse 
approximation without taking account of multiple 
scattering is valid only when the Born approxima
tion is applicable. 


