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C ONSIDER a foreign inclusion in a solid body 
of infinite extent. Let the inclusion be spheri

cal in shape, and filled with substance {liquid or 
gas) in which the material of the solid under 
existing conditions has a marked solubility. Let 
a constant hut infinitesimal temperature gradient 
\l T be maintained in the solid; we will investi
gate the translational motion of the inclusion 
under the influence of this gradient. 1 •2 

It is obvious that, in a solid, the translation of 
an inclusion can take place only by means of the 
transfer of matter into the inclusion, hut a hydro
dynamic mechanism similar to that involved in 
the rise of bubbles in a liquid is excluded (we do 
not consider viscous flow of the crystal). In the 
presence of only a thermal field, the indicated 
transfer is connected with the difference in satura
tion concentrations of the solution at the cold and 
hot ends of the inclusion, and takes place purely 
by diffusion. The presence of other fields leads, 
generally speaking, to the appearance of other 
flows, (for instance, the presence of a gravitational 
field of intensity g can lead to convection*). Thus 
each element of surface surrounding the inclusion 
will have a velocity 

v=(Dfp)vc, (l) 

where p is the density oft he substance com
prising the solid, \l c is the concentration gra
dient of this substance in the material filling the 
inclusion, taken near the portion of the surface 
under consideration, and d is the diffusion coef
ficient. 

The concentration c, which depends, generally 
speaking, on the coordinates and on the time, is 
determined from the equations of diffusion and 
thermal conduction, with suitable boundary condi-
tions: 

ac ;at= D [de+ (krf T) dT]; 

ar1 1 at- (kr 1 cP)(afL 1 ac) p,r ac 1 at= X1d T1 ; ( 2) 

ar2 1 at= x2d r2. 
where k T is the coefficient of thermal diffusion, 

f1 the chemical potential of the contents ofthe 
inclusion, c p their specific heat, and X 1 , T 1 and 

X 2 , T 2 respectively the thermal conductivity and 

temperature inside and outside the inclusion. 
Leaving the boundary conditions out of the picture 
for the moment, we go over in these equations to a 
coordinate system in which the inclusion is at 
rest. Terms proportional to v'VT and v'V c, appearing 
as a result of this transformation, will be of 
second order in \lT (since v "-' \lT ). For 'VT= const, 
v does not depend explicitly on the time, and the 
partial derivatives of the temperature and concentra
tion with respect to time will he at most of second 
order. Consequently, to the approximation being 
considered here, both the temperature and the con
centration satisfy Laplace's equation. We now 
return to the conditions at the surface of separation. 
These will have the form: 

T1 = T2, x 1 aT1;an- x2 aT2jan (3) 

= -qD ac;an, 

x. 1 and x.2 are the respective coefficients of 

thermal conductivity' and a; an is an operator de
noting the derivative along t.~e normal to the sur
face. The right-hand side of the second condition 
makes allowance for the evolution (or absorption) 
of latent heat of crystallization q at the boundary, 
and the third conditions requires that the solid 
solution be saturated at this surface. Since the 
gradient \lT is small, the change in temperature 
along the surface of separation will not he great, 
but if one reckons thetemperature and concentra
tion with respect to their values at the center of 
the inclusion, the last condition in (3) will he 
written thus: 
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c = (dc0 I dT) T1• 
(4) 

Here the derivative de 0 /dTis taken along the 

appropriate equilibrium curve. Thus at the limits 
of the region, the concentration is proportional to 
the temperature, and since both the temperature and 
the concentration satisfy the same equation, there 
will be a similar relation between them every
where inside the inclusion (irrespective of the 
form of the bounding surface). Therefore at the 
surface of separation 

-- qD &c I &n =- qD (dc 0 I dT) (&T 1 I &n). 

If we now replace x: 1 by x:1 +qde/dT in 

condition (3 ), we obtain the well-known problem 
concerning the distribution of temperature around 
a stationary spherical object for a constant tem
perature gradient at infinity (see, for example, 
llef. 3). Multiplying its solution over the interior 
of the region by de 0 /dT, we obtain the distribu
tion of concentration overt he inclusion. 
Making use of Eq. (1), we obtain finally 

v = . 3x2D dc0 'iJT 
Y.1 + 2x2 + qD dc0 j dT dT p (5) 

From this equation it is obvious that the velocity 
of translation of the inclusion does not depend on 
its dimensions. 

The value of v is determined by the quantity 
de 0 /dT, which under conditions of constant pres-

sure is equal to qe 0 /kT 2 • In substances whose 

solubility in the material filling the inclusion does 
not increase with temperature, the inclusion moves 
in the direction of the temperature gradient. If 
however de 0 / dT < 0, the inclusion has to trans-

late in the opposite direction. It is clear that the 
process under investigation is governed by Le 
Chatelier's principle. Indeed, for q > 0, the 
diffusion at the hot end of the inclusion and the 
condensation at the cold end both represent the 
same process, striving to bring the system back into 
equilibrium; this equilibrium is constantly being 
destroyed, however, by the source maintaining the 
temperature gradient. 

It is not difficult to see that an analogous pro
cess takes place for the transfer of matter in a 
liquid medium from a crystal having a high temper
ture to a crystal with a lower one; that is, for 
the growth of one crystal at the expense of another. 

The coefficient of diffusion has the order of 
magnitude 10-5 cm2 /sec; de 0 /dT "'5x 10-2 g/cm 3 

-sec-deg; q"' 102 cal/g; x:2 rv 5 x 10-3 cal/cm
sec-deg. 

Consequently, qD de 0 /dT << "2, and 

v =(3D I 2p) (dc0 I dT) 'iJT, 

that is, v does not depend on the thermal conducti
vity ofthe solid or of the contents of the inclu
siOn. 

If the conditions under which an inclusion exists 
are critical conditions for its contents, then the 
coefficient of diffusion will fall to zero and the 
inclusion will come to rest. For a temperature 
gradient of the order of ldeg/ em, the velocity of 
translation ofthe inclusion amounts to about 0.1 
mm/day. If conditions are created whereby matter 
can Le transferred convectively, the process ought 
tobe noticeably accelerated. 

. *It is clear, for example, that there will be convection 
If the vectors g and 1J T are parallel, but not if they are 
anti parallel. 
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I N the emulsion chamber suggested in Ref. 1, we 
have studied the development of electron showers 

of hig_h energy (E = 1012 ev) at small depths (2-3 
T -umts). The results obtained are compared with 
cascade theory. 2,3 

The emulsion chamber consisted of 24 emulsion 
plates (NIKFI) type R with emulsion thickness of 
100 J1 put together into a stack and held in a 
special frame. Iron plates of thickness 3.5 mm were 
placed between emulsions. The distance between 
adjacent layers of emulsion was 5 mm. The glass 
on which the emulsion was poured was previously 
polished to a size of 86 x 116 mm2 with an ac
curacy of 0.05 mm. This allowed the exact place
ment of adjacent plates which is essential in 


