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interactions and its inclusion is necessary. Be­
sides this in the evaluation of the matrix, ele­
ments M, the authors replaced the inverse operator 
K f1 v by a "nonrelativistic" approximation ob-

tained by neglecting quantities of the type k/M 1 

in comparison to l. This is permissible in those 
cases if A./ M 1 << 1 but for satisfactory agreement 
between theory and experiment one must select 
A./M 1 :::o- l. Consequently, the "nonrelativistic" . 
approximation as used by Kanazawa and Sugawara6 

is inapplicable. 
In conclusion, I use this opportunity to express 

my gratitude to I. E. Tamm for suggesting ,this 
problem and for his continuing aid, and to lu. A. 
Gol'fand, V. Ia. Fainberg and V. P. Silin for 

valuable discussions relating to this problem. 
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Isothermal galvanomagnetic and thermomagnetic effects in isotropic semiconductors are 
treated theoretically in the case of intermediate and strong magnetic fields" 

ONE of the most effective methods of investi­
gating the properties and parameters of semi­

conductors is the study of galvanomagnetic and 
therrr,omagnetic effects. A theory of these effects 
has been developed by a number of authors l- 7 • Most 
of the authors start with a quadratic dependence of 
the energy on the momentum, and with weakness 
of the magnetic field. Meanwhile, experiment has 
revealed many cases in which it is not legitimate 
to consider the effective magnetic field* cp small. 

Even at room ten,perature, it is often necessary 
to deal with intermediate effective magnetic fields 
( cp2 "' 1 ), and sometimes even with strong ones 
( cp2 >> 1 ). Thus, for example, at T = 300° K and 

H = 104 oe, cp2 "" 1.5 for HgSe, and cp2 = 36 for InSb. 
At low temperatures we quite often deal v.ith inter­
mediate and strong effective magnetic fields. 
Davydov and Shmushkevich 3 obtained formulas for 

the Hall effect and for the change of electrical 
conductivity in the case cp>> 1, and l\1adelung6 con-

* By "effective magnetic field" we shall understand 
the dimensionless quantity cp= uH/c, which essentially 

determines the effect of the magnetic field H on the 
carriers of current in a semiconductor. Here u is the 

mobility oi the carriers, and c is the speed of light. 

sidered the same phenomena in the case cp~ l, but 
only for semiconductors with an atomic lattice. 

The present work concerns the extension of the 

theory to the region of intermediate and strong mag­
netic fields, for various types of interaction of the 
carriers with the crystal lattice. We also determine 
which features of the galvanomagnetic and thermo~ 
magnetic effects depend on the statistics and on the 
scattering law. We consider only isothermal ef­
fects; for, as Tolpygo 5 showed, the adiabatic 
effects differ little in magnitude from the isothermal. 

1. SEMICONDUCTORS WITH CARRIERS OF A SINGLE 

TYPE 

Transport Equations 

The kinetic equation for the distribution function 
f( r, p) of the carriers, in rr;omentum ( p) and co­
ordinate (r) space, has in the stationary case the 
well-known form 

Here v is the velocity of a carrier, F is the ex­
ternal force acting on it, f ( ~) is the equil-

0 kT 

(l) 
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ibrium distribution function, f = d p) is the energy 
as a function of the momentum, Tis the relaxation 
time, and fl. is the chemical potential. In an iso­
tropic semiconductor, the energy and the relaxation 
time are functions only of the magnitude p of the 
momentum. 

A carrier in a magnetic field H and an electric 
field E is acted upon by the Lorentz force 
F = e ( E + [ p, H] I me), where e is the elementary 
charge, and m is the effective mass of the carrier. 
We shall, as usual, seek a solution of Eq. (l) in 
the form 

.f = fo + PX (p, r, T)jm. (2) 

Upon substituting F and fin (l}, we obtain, after 

a few transfQrmations, the following equation for 

x: 

X+~; [H, X] (3) 

f ( T fl.\ 1 } dfo 
=- r; le E- e \fry)- Z\f n T {k = Xo· 

If we introduce the notation IX= Hili, f3 ( p) 
= eli T( p )I me, the solution of (3) can be written 
in the form 

The electric current density is 
<X> 

• \ P ( ) d/0 d 41't' \ p4 .., dfo d ( ) J=ejfil2 XP de P=-3eJ m2 "'(k p. Sa 
0 

The density o:f the heat current transported by the 
electrons is 

<X> 

~ P dfo 41't' ~ p 4 r: d/0 Q = ~ -2 --t (x, p)dp=--;;- 2 -d xdp. (Sb) m 1r: .., m e: 
0 

Upon substituting (4} in (Sa) and (Sb), we get 

(6a) 

+ [e2J20E- eJ21 \}In T, a]· 

+ a ( e2 J 30 E - eJ 31\1 In T, 11); 

E = E- (Tje) \lr(tJ./T), 

<X> __ 47t (eH)q-J \ p3-:~ 8 r dfo -.!!1!~ 
- :3 c J nzq dp 1+[:12 

0 

( q = l, 2, 3 ). The expansion of the integrals J qr 

in powers of cp and l/ cp has the form: 

i 

J qr = ueN ~ (- I )1+1 aq+21.rCfq+21-l 

i=O 

i 

J _ uN ~ (- 1 )l-1a _ coq-2l-1 
qr _ e "-J q 2l.r, 

1=1 

for cp2~ 1. 

• 41't' 
Jqr_2l,r =- 3 

f ( - )q±2l df 
X.) p3 ~ s' d/ dp; u = eJ~0jJ~0 

0 

( N is the carrier concentration). It can be shown 
that the following relations hold: 

co 

J' __ 47t \ p3 dfo dp 
00- 3 .) dp 

0 
<X> 

= 4TC ~ P2f0dp = N, J1r +Jar= J~,. 
0 

The expansion of the integrals J qr is, in general, 
of asymptotic type. More explicitly, from some 
term onward the coefficients in the expansion in­
crease without limit; therefore, it is necessary to 
break off the expansion at a term preceding the 
smallest term of the series. 

In pracltice, we limit ourselves to the terms pro-

Q = eJ11 E - J 12 \1 In T (6b) portional to cp(for cp2 « l) and to cp-l (for cp2 » 1). 

+ [eJ 21 E -Jz2 V ln T, a] 

Here 

This means that for cp = liS or cp= S, for example, 
the error in our formulas will not exceed 4%. Ac­
tually, the accuracy of the calculation is even 
greater, since in the expansion off in each case 

qr 
we neglected one term in the denominator. 
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Galvanomagnetic Effects 

Under the isothermal condition ( 'V T = 0) ( 6a) 
takes the form 

We consider a specimen in the shape of a rec­
tangular parallelepiped. Let the primary electric 
field be directed along the x axis; let the magnetic 
field lie in the xz plane. Then we may set cx.x 

= cos e, (). = 0, lX. = sine, where e is the angle 
y "' 

between the magnetic and the primary electric 
fields. 

The conditions that there be no electric cur­
rent in the y and z directions give two equations 
to determine the components E Y and E z of the 
electric field: 

(8) 

E _ E, (J~0 - lt0la0 ) sin 26 

~z - 2(J~o + J~o COS 2 e + Jlolao sin2 6) 

The relative change of the electrical conductivity 
a = j x /Ex in the magnetic field can be found by 
substituting (8) in the expression for the x com­
ponent of current: 

+ J~0 cos2 6 + J 10J 30 sin2 6), 

where ~a= a 0 -a; a 0 is the electrical conduc­

tivity of the .semiconductor in the absence of a 
magnetic field. From (8) and (9) we get 

Ez = - (~cr / cr0)£.,. ctg 6. 

(9) 

(lO) 

THus in the general case of arbitrary statistics, 
scattering law and dependence of the relaxation 
time on the momentum, the (Hall) field EY changes 
its sign upon change of sign of the magnetic field 
( e .... e + 7T ). If the magnetic field coincides in 
direction with the primary electric field, then the 
Hall field reduces to zero. The (longitudinal­
transverse) field E z does not change sign upon 
change of direction of the magneticfield. E z re-

duces to zero in two cases: when H coincides in 
direction with E . The longitudinal-transverse 
effect was first treated by the authors. 8 

Since Ez and ~a/a0 are mutually dependent, we 
shall henceforth give expressions only for ~a/a 0 • 

From formulas (8) and (9) it is clear that all three 

of the effects considered have some anisotropy with 

respect to the direction of the magnetic field. On 
the basis of Schwarz's inequality it can be con­

cluded that 1; 0 -] 1 of 30 .::; 0; consequently, a 

.::; ao. 
The integrals that occur in formulas (8) and (9) 

do not in general reduce to known functions; con­
sequently, it does not seem possible to give a 
general description of the dependence of E and 

y 
~a/a0 on the effective magnetic field, the carrier 
concentration, and the temperature. We therefore 

restrict ourselves to a consideration of limiting 

cases and of some special cases. To find the 

temperature dependence of the effects, it is neces­
sary to assign a dependence of the distribution 
function, the relaxation time, and the energy upon 
the momentum and the temperature. We set* 

s (p) = p2j2m; fo (p, T} (11) 

't (p, T) = cp (T) pn-1. 

Upon substituting the expansions of the integrals 

f 10 • f 20 and f 30 in (8) and (9), we get for 'f « 1 

Ey = ancpEx sin 6, b..crfcr0 = (bn- a;) tp2 sin2 6. (12) 

When e = TT/2, these formulas agree with the 
formulas derived by Tolpygo 5 . For 'f >> 1, 

sin 6 E Ey = . (!) X; 
cos2 6 +an sin2 6 . 

(13) 

..:la (a~ -1) sin2 6 
-= 
<ro cos2 6 +a~ sin2 6 

bn = 9rrf (3nf2 + l)/16f3 (n/2 + 2), 

an=!~r(3- ;)r(~+2), 
co 

f (n) = ~ xn-le-XdX. 
0 

* The right members of formulas (11) m,ay be regarded 
as th.e first terms of expansions in series of appropri­

ate functions; therefore, all the results obtained may 
be considered approximations for more general cases, 
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The mobility is 

u = (4eJ3V;~m) cfJ (T) (2kTjm)(n-1 li2 r (n/2 + 2), 

where the form of <I> ( T) is determined by the nature 
of the interaction between the carriers and the crys­
tal lattice. 

From formulas (12) and (13) it is clear that the 
Hall field, in both limiting cases, varies linearly 
with the effecltive magnetic field; the relative 

change of electrical conductivity increases in pro­
portion to cp in weak magnetic fields but approaches 
saturation in strong fields. In the case of strong 
fields, the peculiar anisotropy of both effects, 
shown by fommlas (14), should be noted. 

Even with the assumptions (ll), it still does 

not seem possible to reduce the general expres­
sions for the galvanomagnetic and thermomagnetic 
effects to known functions. This calculation can, 
however, be carried out for a number of special 
cases: (1) n = 0 (this corresponds to a semiconduc­
tor with an atomic lattice); (2) n = 1 (this corre­
sponds to an ionic lattice at temperatures below the 
characteristic temperature); (3) n = 2( this corre­
sponds, according to Bloch's scheme, to a semi­
conductor with an ionic lattice at temperatures 

above the characteristic temperature). 

We give the exact formulas for EY and f.. a/a 0 

in these special cases: 

1) n = 0 (14) 

(!1- !~- !~) sin2 e 
--=~--~----~-----(Ji + ~) cos2 6 + J 1 sin 20 ' 

2) n = 1 (15) 

E y = 9 Ex sin fJ, !:icrjcr0 = 0; 

3) n = 2 (16) 

(:N-n \ 
2 -4- f- f 2Jz) sin fl 

Ey = Ex, 
[t4Ji + (3~ 7t t;4- t 2lz)2 ] cos2 e + 2t2Jl sin2 e 

<icr [2t2J1 - t4J;- (3V; t/4-f2!2 ) 2Jsin2 e 
cr0 [Ni + (3Y 7t t/4- t2J2) 2J cos2 e + 2t 2J1 sin2 e 

In (14)-{16) and below, the following notation is 
used: 

J1 = 1- t~- t4et'Ei (- t2 ); J2 = t [1/ 2 - t 2 + V; t3et'p (t)]; 
t co 

F (t) = 1 -erf (t); erf (t) = .r- e-x'dx; Ei (- t) = '!.____:_dx, 0 < t < oo. 2 ~ ' -x f~ v X 
0 t 

E ', E' and E '. From (6a) under the condition 
X y Z For n = 0, t '= 3y'-; cp/4.; for n = 2, t = 8/3y~ cp. 

j = 0 we get a system of equations for determina-
Thermomagnetic Effects 

Let a temperature gr-adient exist along the x 
axis; let the magnetic field lie in the xz plane; and 
let the electric current in the specimen vanish.Then 

electric fields E; and E; appear in the directions 
of they and z axes, and the thermoelectric field 
undergoes a certain increase E ;. We will compute 

tion of the fields E ', E' and E '; the desired field 
X y Z E; is connected with the quantity E; by the rela-

tion 

Ex= E~- (Tje) \Jr(fl./T) + (J~IfeJ~o) \)InT. 

By solving this system, we find 

. "dInT s1nv--, E:=-E~ctg6. (17). 
dx 
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Thus the field E ', which determines the trans­
•verse Nernst-Ettin~shausen effect, changes sign 
with change of the sign of the magnetic field. 
The fields E~ and E;. which determine, respec-
tively, the longitudinal Nernst-.l<.:ttingshausen ef­
fect and the longitudinal-transverse thermomag­

netic effect, do not change sign with change of the 
sign of the magnetic field. 

As the calculation shows, the anisotropy inherent 
in the galvanomagnetic effects does not appear in 
the thermomagnetic effects; in all further calcula­
tions, therefore, we will set () = rr/2. 

We consider the limiting cases of weak and 
strong effective magnetic fields. For cp << 1,, 

' ( a~) k "dT E =(1-n) b -- -cv-x n 2 e ' dx ' 

' 1-n k dT Ey=--a -r.r;-2 n e • dx · 

(18) 

These formulas agree with those obtained in Ref. 5. 
For cp >> 1, 

E~ = 1- n a' .!!_ _!_ dT (19) 
2 n e q:> dx · 

Thus E; varies quadratically with the effective 
field cp in weak fields and approaches saturation 

in strong fields. E; increases linearly with cp in 
weak fields and is proportional to 1/ cp in strong 
fields. Therefore, in the intermediate field range, 
i.e., for cp"' l, the function E;(cp) must have at 

least one maximum. 
We give the exact formulas for special cases: 

1) n = 0 

E' = - .!!_ {t2 -
.r e 

(20) 

2) n = 1 (21) 

3) n = 2 
(22) 

E~ = _ !!_ {t2- 2t411 + (t5Vn t;B) (:1Vn t;4- t~l2l\ dT ' 
e f4J~ + pV r. t;4- t2J2 ) 2 J dx 

• k 2t 2 (3Vn t/4 -- t 2J2)-15Vn t3l1!8 dT E y =- ----'----::-'--~=-=------"------
e f4li + (3V r. t;4- t 2J 2) 2 dx 

Fommlas (20)-(22) do in fact imply the presence 
of a maximum in E; ( cp) and of a region of satura­
tion in E; ( cp). Graphs of the functions E; ( cp) and 
E;(cp) are given in Figs. 1 and 2. 

!.5 , v--....-S: 

/ 
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0 25 50 75 

FIG. 1. Dependence of the dimensionless field of the 
longitudinal Nernst-Ettingshausen effect on the effec­
tive magnetic field. Curves 1, 2, 3 correspond to n 
= 0, 2, 4. 

We consider the effect of a magnetic field on the 
electronic part of the heat conductivity. We set 

E; = E; = 0. Under isothermal conditions aT I ay 
=aT;az = 0. Then from (6a) and (6b) we have 

. 9J E""' J dIn T 1 x = e" 10 x- e 11 dX • 
(23) 

From the condition jx = 0 we find E; =(J 11/e] 10)d 
x ln T /dx. The coefficient of heat conductivity 
due to the current carriers is 

(24) 
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J 1;2 
!.,5 , D,5 

~ _.., E.' I \ "U 
I \ 
I \ 

2j) I /l'l 

\ 

• 1,5 

QL----....I..------~-------L-----1.0 
2 " 6 t1 

Frc. 2. Dependence of the dimensionless field of the 
transverse Nernst-Ettingshausen effect on the effective 
magnetic field. Curves 1, 2, 3 correspond to It= 0, 2, 4. 

In the limiting cases of large and small cp we get 
for ,\ the following formulas: for cp<< l, 

(25) 

i, = (k2T je) uN {2 + n/2- bn (n2 - nl2 + 2) r.p2}; 

for cp >> l, 

Formula (25) agrees with the corresponding formula 
of Ref. 5*. 

From (25) and (26) it follows that the relative 
change of the coefficient of heat conductivity, 
(A 0 -,\)/,\0 , is a quadratic function of cp in ¥leak 
magnetic fields and approaches unity in strong 
fields. 

In special cases the coefficient of the electronic 
part of the heat conductivity is determined by the 
expressions: 

* We remark that in Ref. 5 an error crept into formulas 
(34) and (34 ') for the heat current: in the numerator of 

the fraction, n2 -- n + 2 should be n2 - 1n/2 + 2. The 
same mistake was made by Avak'iants in Ref. 9. 

1) n=O (27) 

I,= (kz Tj e) uN [(2t 2 + 6) J1- 4] I J1, 

2) 1l == 1 
(28) 

i, = (5k2T j 2e) uN I (1 + 92); 

3) n == 2 (29) 

'A== (k2T I e) uN [(6 + 2t2) J1- 4] I 2Jl. 

A graph of the relative change of heat conduc­
tivity as a function of the effective magnetic field 
is given iin Fig. 3. 

From formulas (18) and (19), E' and E' > 0 for 
n < l; E' = E ' = 0 for n = l; and E' ana E' < 0 x· y x y 
for n > l. It is the absolute values of E' and E' 

X y 
that are plotted in the graphs l and 2. It is evi-
dent from Fig. 2 that the maximum value of E; in­
creases with increase of n. The graphs of the 
function At\./,\0 ( cr) for different n's differ from 
one another only in the region of intermediate effec-

tive fields (Fig. 3 ). The graphs for the case n = 4, 
which corresponds to scattering by impurity ions 
and to polar conductivity at high temperatures, 
were drawn on the basis of the asymptotic formulas. 

2. SEMICONDUCTORS WITH MIXED CONDUCTION 

Galvanomagnetic and thermomagnetic phenomena 
in semiconductors with mixed conduction have a 
number of peculiarities as compared with the same 
phenomena in semiconductors with current carriers 
of a single sign. The researches of one of us 10 

have shown, for example, that the appearance of a 
few percent of minority carriers can have an appre­
ciable influence on the character of the thermo­
magnetic effects. 

In the case of mixed conduction, the electric or 
heat current is defined as the sum of the electron 
current and the hole current: 

j = j+ + j_, Q = Q+ + Q_. (30) 

Hereafter the plus sign will denote quantities per­
taining to holes, the minus sign to quantities per­
taining to electrons. 

The calculation will be carried out on the assump­
tions (11)*, except that the following expression 
will be assumed for [ 0 : 

* Original: (12). 
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•.• { 1 ( p2 1} fo (p, T) = N (2;r:mkT)- ,- exp - ZkT w + ZmJ , 
m_ and N- are to be interpreted as the effective 

+ + 
mass and concentration of the electrons or holes .It is also as-

where w is the width of the forbidden energy gap. sumed that the scattering mechanism is the same 
for electrons and for holes, i.e., that n_ == n+ == n. 

0 2 q 

FIG. 3. Dependence of the relative change of the elec­
tronic part of the heat conductivity on the effective mag-

netic field, Curves 1, 2, 3, 4 correspond to n = 0, l, 2, 
4. 

Galvanomagnetic Effects 

The expression for the total electron and hole 
current retains the form (7), but the coefficient f qr 

must be redefined as follows: 

(31) 

For weak effective fields the Hall field, as in the 
case of semiconductors with carriers of one sign, 
depends linearly on 'f:B but it may change sign in 
its variation with the concentration and mobility 
ratios of the electrens and holes. The relative 

With the interpretation (31), fomtUlas (8) and (lO) 
may be carried over to the case of semiconductors 
with mixed conduction. 

We will obtain expressions for the Hall field and 
for the relative change of electrical conductivity in 
the limiting cases of weak and strong effective 
magnetic fields. For 'f± << 1, 

(32) 

(33) 

change of electrical conductivity is proportional to 
'f~ , as in the case of semiconductors with carriers 
of one sign; but for n = 1 it does not reduce to 
zero. 

For 'f± >> 1 we consider two cases: 

(34) 
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a0 - a a~ (N+fu+ + N_ju_) (N+n+ + /l'_u_)- (F+- N_)2 
- . sin2 6. 

cr0 (N+- N_)2 cos2 6 +an (N+fu++N-fu_) sin2 6 (N+u+ + N_u_) 
(35) 

In the case of strong effective fields, the ex-
pression for the electrical conductivity is of inter-

est: 

Fore= rr/2 and n = 0, 1 or 2, formulas (36) re­
duces to formulas obtained by Davydov and Shmush­
kevich3. 

(b) N =N =N: + -
E en q:>+-q:>_ 

u =-;- . Ex, 
an CJl+CJl- Sill 6 

cr0 - cr , eN (u+ + u_) 
--- = 1 cr = an-----

cro ' CJl+CJl- sin2 6 ' 

(37) 

From the forn,ulas for strong effective fields it 

follows that the functions Ey(Cf!±) and u(cp±) are 
different for different ratios between the concen­
trations of the electrons and of the holes. In the 

case N + =fo N -·' E Y ( Cf!±) increases with increase 
of the effective field; u ( cp+) approaches saturation. 

For N + = N _, E / cp±) and a ( cp±) decrease with in­
crease of the effective field. Formulas (37) for 
E and u are correct if e differs considerably from 

y 
zero. If e is small, it is necessary in deriving the 
formulas to take account of terms of fourth order in 

1/ Cf!±· Then the functions E Y ( cp ±) and u ( Cf!±) will 
have the same character as in the case N + #= N _. 
Formulas (37) imply a very unusual type of de­
dendence of the effects on the angle between the 
magnetic field and the primary electric field: upon 
decrease of the angle e (provided e differs con­
siderably from zero), the Hall field and the elec­
trical conductivity increase. The sign of the Hall 

(36) 

effect in case (a) depends mainly on the concentra­
tion ratio of the electrons and holes; in case (h), 
on their mobility ratio. 

In a conductor with mixed conductim, if the con-
centrations and the mobilities of the carriers are 
simultaneously equal, then EY = 0, and the elec­
trical conductivity is u = a' u 1 cn2 sin2 e in the n 0 T 

case of sltrong effective fields and u==u ( 1-b cj 
• 2 e) h 0 n x sm in t e case of weak fields. 

Thermomagnetic Effects 

If in formulas (17) for E' and E' we make the 
b • • X y 

su shtuhons 

1 u = 1/2 (1:0- Jill) w + rt_- r;;_,' 
121= 1/2 u-;o + 1-;o) w + 1t + 1;;, 

l31 = 1/2V:O-J~)w+ ri;,-I;;;_, 

and also use (31), we get the general expressions 
for the longitudinal and transverse N ernst-Ettings­
hausen effects in semiconductors with mixed con­
duction. The relation between E; and E; stays 

the same even for semiconductors with mixed con­
duction. Therefore, only the expressions forE' 

X 

and E; will be considered below. We consider the 
limiting cases of weak and strong effective fields, 

on the supposition that e == rr/ 2: 

For Cf!+ << 1, 

' k '1 f{ {( a~ \ ·3 3 2 . r3 3 2 
Ex = e (N+u+ + N_u_)s) (1 - n) bn- T) (1\i +u+r+- .i.V _u_cp_) 

+ N+N_u+u_[bn(N+u+cp~- N_u_cp':_)- ;;, (N_u_-N+uJcp+cp_J} 

-N+N _u+u .{[(4+2n) bn- 3n i 8 a; ]UV> .. cp~--N _u_cp:__)+(4+2n)bn(N+u+cp:r, 

M 2 ) 3n+8 2 (1\' 7\' 1 w }}dT -lv u~-- --2-an · u -1~·.u)co~\- -· - -' - - "' + '+ • f kT dx ' (38) 
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For cp±» 1: (a) N+ =f= N_: 

(b) N+ = N _ = N: 

, _!!.._ (cn-a~)(u+-u-) (I ~)dT 
Ex- e u+ + u_ + 5kT dx ' 

(41) 

E' __ _ 5k 'P+'ll- (I+~-) !iT 
Y - e a~ ( 'P+ + 'll-) 5k T dx · 

The formulas for the thermomagnetic effects show 
that for cp+ << 1, the longitudinal and transverse 
Nernst-Ettingshausen fields depend on the effec­

tive field in the same way as in semiconductors with car­
riers of one sign. In the case of strong effective fields 
the dependence of E' and E' on cp+ is different for 

X y -
different ratios between the concentrations of the 
electrons and of the holes. When N + =f= N _, the 
dependence remains of the same type as in semi­
conductors with carriers of one sign. If N + = N _, 
however, the transverse Nernst-Ettingshausen 
field does not decrease, hut increases, with in­
crease of the effective field; the longitudinal 
Nernst-Ettingshausen field approaches saturation 

but the saturation value is different from the satura­
tion value for N + ~ N _ . 

Estimation indicates that formulas (37) and (41) 
are applicable only when the electron and hole 
concentrations are quite close to each other in 
magnitude. Thus if we put cp = 5 >> 1 (by cp must 
be understood the larger of the quantities cp+ and 
cp_ ), the indicated formulas may be used when the 
concentration ratio is not less than 0.96. 

Finally, we give formulas for the electronic 

part of the heat conductivity of semiconductors in 
the limiting cases of weak and strong effective 
fields. In view of the extreme unwieldiness of the 
general formulas for the case cp+ << 1, we give a 

formula obtained on the supposition that w/kT >> 1, 
by neglecting terms not containing w/kT or pro-

(39) 

(40) 

portional to it, and keeping only terms proportional 
to (w/kT) 2 : 

- k+T {.( n) 
1·o = -e- 2+ 2 (f.(+u+ + N_u_) (43) 

+ (4 + n)2 N+N_u+tL (I . _1_ .!!!____)2} 
N+k++i\_u_ ;-- 4 + n kT ' 

'\ is the electronic part of the heat conductivity in 
the absence of a magnetic field. For cp >> 1 

+ ' 

), =a~ k 2T {(3 - ~) ( N+u+ + N_u_) (44) 
e 2 cp:r cp:_ 

+ N+N_u+u- (6-n)2 (I+ _1_ -~)2l 
N+u+cp:._ + N_u_cp:_ 6- n kT 1· 

Thus different ratios between the electron and 
hole concentrations, in the case of strong fields, 
do not influence in an essential way the depend­
ence of the electronic part of the heat conductivity 
on the effective field, as was true of the Nernst­
Ettingshausen fields. 

We consider it a welcome duty tQ express our 
thanks to Kh. I. Amirkhanov and V. P. Zhuze for 
their interest in the work and for discussion of its 
results. 

Note added in proof: Recently one of the authors 

(F. G. Bass) has succeeded in showing that on the 
assumption of an arbitrary isotropic scattering law, an 
arbitrary form of the collision integral, and any statis­
tics, the dependence of properties on magnetic field in 
the galvanomagnetic and thermomagnetic effects, in the 
limiting cases cp2 >> 1 and cp2 << 1, is the same as that 
obtained in the present article under the assumptions 
of formulas ( 11 ). 
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