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agree qualitatively with the data for dialogite. It 
follows from the data of Bizette and Tsai that an 
uncompensated moment is directed perpendicular 
to the trigonal axis; this supports our first pro­
posal. 

In closing, the authors convey their profound 
thanks to Prof. P. G. Strelkov for his constant 
interest in the work. 

1 H. Bizette, J, phys. radium 12, 161 (1951). 

2 Biltz, Z. anorg. Chern 220, 312 (1934). 

3 A. S. Borovik-Romanov and N. M. Kreines, J. Exptl. 

Theoret. Phys. (U.S.S.R.) 29, 790 (1955); Soviet Phys. 
JETP 2, 657 (1956). 

4 S. V. Vonsovskii, The Modern Science of Magnetism, 
Moscow, 1952. 

5 B. H. Schultz, Physica 7, 413 (1940). 

6 L. Neel and R. Pauthenet, Compt. rend. 234, 2172 
(1952). 

7 R.A. Erickson, Phys. Rev. 90, 779 (1953). 

8 B. F. Ormont, Structure of Inorganic Substances, 
Moscow-Leningrad, 1950, p. 757. 

9 H. Bizette and B. Tsai, Compt. rend. 241, 369 (1955). 

Translated by W. F. Brown, Jr. 

122 

SOVIET PHYSICS JETP VOLUME 4, NUMBER 4 MAY, 1957 

Dispersion Relations for Scattering and Photoproduction 

B. L. JOFFE 

(Submitted to JETP editor May 28, 1956) 

J. Exptl. Theoret. Phys. (U.S.S.R.) 31, 583-595 (October, 1956) 

A derivation is given of the dispersion relations for the following problems: scattering of 
pions by nucleons (excluding the case of scattering at small but nonzero angles), photo pro­
duction of pions on nucleons, scattering of nucleons and antinucleons by nucleons. The 
method of consideration is based on the general requirement of the impossibility of the propa­
gation of signals with velocities exceeding that of light, and does not make use of the concept 
of the S matrix for demonstration of the analytical properties of the scattering amplitude. The 

issue is decided as to whether requirement of microcausality is a necessary condition for the 
validity of the dispersion relations and it is pointed out that for certain types of violation 
of causality, the dispersion relations are preserved. 

R ECENTLY, Goldberger and others 1 - 4 obtained 
dispersion relations for the problem of the 

scattering of mesons from nucleons. In their deriva­
tion of the dispersion relations, these authors re­
lied on the concept of microcausality; they made 
use of a series of general situations of quantum 
field theory in its present-day formulation. In 
view of the great generality of the dispersion rela­
tions, there is interest in givirig another (and, as 
it appears to us, simpler) derivation of these rela­
tions, relying essentially only on the requirement 
of the impossibility of the propagation of signals 
with velocities greater than the velocity of light. 
The method set forth allows us to draw several con­
clusions on the problem of whether it is necessary, 
for the existence of dispersion relations, that the 
propagation velocity of the interaction be smaller 
than the velocity of light everywhere, even at micro­
scopic distances (of the order of a nuclear dis­
tance), or whether it suffices to fulfill this condi­
tion only for macroscopic distances. In this case 

it appears that the dispersion relations are pre­
served if we assume that the interaction can propa­
gate, not inside the light cone t 2 - r 2 > 0, but in­
side the hyperboloid t 2 - r 2 > -l~ (l 0 is a dis­
tance of the order of a nuclear distance), i.e., 
when a condition which violates causality is im­
posed in the intervi:tl. 

In the present paper, the dispersion relations 
are considered for the scattering and photoproduc­
tion of pions on nucleons, and for the problem of 
scattering of nucleons and antinucleons by nucle­
ons. 

1. SCATTERING OF PIONS BY NUCLEONS 

Let us consider the scattering amplitude (with-
+ out charge exchange) of rr --mesons by protons, 

f+(w, 0), in which we first limit ourselves to the 
c;se of forward scattering*, 

* We shall neglect Coulomb scattering. 
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Let f +( w, 0) = f +( w ), given as a function of the 

frequen;;-y w on the ~eal axis for w > f1 ( f1 =mass 
of meson, fr: = c = 1 ), analytically continued over 

the entire complex plane w. We shall show that 

f + ( w) has no poles in the upper half plane of w 

and vanishes sufficiently rapidly on a semicircle 

of large radius Q --> oo in this half plane. 
We shall carry out our analysis in the laboratory 

system of coordinates, where the nucleon is at rest 
before and after the collision. In this case, it is 
appropriate for us to represent the wave function of 
the nucleon in the form of a wave packet ( natur­
ally, of sufficiently large dimensions that the con­
dition of finding the nucleon in a state of rest is 
satisfied with any degree of accuracy necessary 
for us). The wave function f +( r) of the rr±-meson 
that is scattered forward is chosen (at large dis­
tances from the scatterer) in the following fashion 
fron, the wave function of the incident meson 

eikz-iwt (origin of the coordinates at the center of 
the wave packet): 

'f± (r) = f ± (w) eikz-iwtjr (l) 

=~K±(t, t', r, r')eikz'-iwt'dsdt'. 

Integration on the right side of (l) is carried out 
over the region inside the light cone (t- t') 2 

> (r- r') 2,where it suffices to carry out the spa-

tial integration, in accordance with lluygen's prin­
ciple, over any closed surface surrounding the 
point r that does not penetrate the region where 
the wave function of the pion differs from that 
function free of the presence of the nucleon. As 
such a surface we shall choose a plane ¥.hich is 
perpendicular to the direction of the momentum of 
the incident meson (the z axis) and which passes 
beyond the wave packet [the infinite semicircle 
closing it does not give a contribution to the in­
tegral (1)]. The function K* depends on the co­
ordinates of the wave packet, i.e., on the energy 

of the nucleon in addition to the coordinates r, r' 
and the times t, t' of the incident and scattered 

particles. 

* The function K is directly connected with the 
nucleus by a two-particle equation for the system meson­
nucleon. Within the framework of the present formalism, 
Eq. (l) can be obtained from the properties of the two­

particle equation upon consideration of the fact that the 
nucleon is centered in a small region near the origin of 

the coordinates. 

For forward scattering in the laboratory system, 
the initial and final energy of the nucleon is equal 
to M, the rest mass, and does not depend on• w; 

therefore, the entire dependence of the, right,side 
on w is determineJ Ly the facto1· e-iwt +ikz . Mul­

tiplying (l) by e -ik z + iwt and introducing the new 

variables T = t - t ', p = r- r' = { g, Tf, (I, we get 

( l) in the form 

1 ~ " -rf±(w)= ~ d-cd,d"tJK±("=, p, r, t)eiwT-ikf.. (2) 

-r>P 

It is evident from (2) that when w is found in the 
upper half plane Om w > 0), an exponentially de­
caying (with increase in T) factor appears under 
the integral of Eq. (2). This factor guarantees the 
convergence of the integral. It then follows that 

f+ ( w) cannot have poles in the upper half plane of 

w. In order to analyze the behavior off+( w) on a 
large semicircle in the upper half plane ~f w, we 

note that for w--> oo, k"' w- fl 2/2w and, conse­

quently, lm(wT- k()--> lmw( T-Q + O(f1/W)f1(. In­
asmuch as T> (, then lm ( w T- k () > O,and tends 

toward infinity for lm w-> oo. Thus, f ±( w) dis­
appears, or at least does not increase, on the 

large semicircle in the upper half plane of w. 
Making use of two properties off+( w) in the 

upper half plane of w given above (the absence of 
poles and the vanishing on a semicircle of large 
radius), it is easy to obtain a correction (with the 
help of the Cauchy theorem) between the real and 
imaginary parts off±( w ): 

00 

R 1 ~ Imf+(ro') ef±(w)=-P - dw' 
7t w' -w ' 

(3) 

-oo 
where the integration on the nght side of (3) in 
the neighborhood of the pole w '= w is taken in the 
sense of the principal value, and all the singulari­
ties of the amplitude of f ±( w) which lie on the 
real axis, are detoured above. Equation (3) is 
correct iff+( w) vanishes with sufficient rapidity 
as w --> ± oo.- If this is not so, then the correct re­
sult can he obtained by considering the difference 

f ±( w) - f ± ( w 0 ) in place off±( w ). Here w 0 is 
some fixed frequency. This is equivalent to a sub­

tractiOn from both sides of (3) of its value for 

w = wo. 
We now turn our attention to a consideration of 

the scattering at an angle not equal to zero. In 

this case, as was shown by Salam 4 , it is awopri­

ate to transform to a system of coordinates in which 
the sun1 of the initial p and the final p' of the 
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momenta of the nucleon is equal to zero: p + p' = 0. 
It is easy to see that in this system of coordinates, 
w = w ', k = k', and in place of (1), we will have 

f ± (c.u, O)jr (4) 

= ~ K ± (t, t', r, r') ei"' (t-t'Je-i (kr-kr') ds dt'. 

The integration in (4) is carried out over a plane 
which passes through p. Then the function K will 

depend on w only through the absolute value of the 
momentum of the nucleon, p. We denote q = 21 pI 
= 2k sin ( 0/2) and shall consider the scattering 
amplitude as a function of w for fixed q. By the 
same arguments as in the case of forward scatter­

ing, we can show that f ±( w, q) has no poles in 
the upper half plane of w. For the investigation of 
its behavior on the large circle, we denote t - t' 
= T, r- r' = p, anJ make use of the fact that for 

large r(r"' p >> r') we haver= p + nr'. Here n is 
a unit vector in the direction of the scattered 
IIJeson. Then (4) can be written in the form 

+ f ± (c.u, q) = ~ d't d~ d-r1K ('t, ~· r, t, q) (5) 

't">P 

X exp {i [c.u't- kp]- i (knr'- kr')}. 

If w tends toward infinity and q is fixed, then 
e--. 0. In this case we can consider 

(knr'- kr') ~ kO V ~2 + Yj2 ~ q y~z + 712, 

so that the second term in the exponent in (5) is 
dependent only on q. Inasmuch as K also depends 

only on q, then the entire dependence on w for large w 
is determined by the factor ei(wT-kpl. But 

Im(wT-kp) > U and tends toward infinity for 

Im w--> oo, This permits us to draw the conclusion 

that f +( w, q) vanishes on the large semicircle in 

the upper half plane of w·. Thus f+(w, q), con­
sidered as a function of w for fixed q, must satisfy 
the relation (3). 

Below we shall be interested in the small 
momenta q transferable to the nucleon, i.e., in 
small angle scattering. In this case we can con­
sider the nucleon nonrelativisiically and de;:.cril:.e 
the scattering amplitude in the form 

f ± (c.u, q) = f~l (c.u, q2 ) + ia [kk'] f~l (c.u, q2), 

where a is the spin vector of the nucleon. It is 
clear that the dispersion relations (3) will exist 

(6) 

independently for the functions [<ll and [<2>. Upon 
substitution of (6) in (3), the integration over the 

region w < 0 reduces to integration over w > 0 with 
the help of the relations 

(7) 

f~>(-c.u, q2) =- ~~~· (c.u, q2). 

In order to prove (7) we can consider, as pro­
portional to the scattering amplitude, the invariant 

matrix element M ±cxf3 (p, p '; k, k ')which is 

characterized by a certain arbitrary Feynman 

diagram ( J.., f3 =spin indices). Consideration of 
the arbitrary diagram (on which we shall not 
linger) shows that* 

M± <>f3 (p', p;- k,- k') = M~ 13 " (p, p'; k, k'). 

Actually M +depends (except for spin factors) 
only on the th-;:ee invariants: pp: ( p + p ')k, 
( p - p ') k which, in the system of coordinates for 
which p = -p ', are equal, respectively, to 

pp' = M:1 + 1/2 qz, (P + p') k = y Mz + 1/4q2 c.u, 

(p-p')k = _lj2q2. 

It is seen that in the given coordinate system the 
substitution k --> -k, p --> p' is equivalent to the 
substitution w--> -w for fixed q2 • Then, consider­

ing that [ k k '], upon the substitution k --. - k, 
p --> p ', transforn1s into itself, we obtain (7). It is 
evident that for q2 = 0, the first of the relations in 

(7) transforms into a relation for the forward scat­
tering amplitude in the laboratory system: 

(7 ') 

Substituting (6) and (7) into (3), we get 

1 
2 Re ff!f_l (c.u, qz)-"- f<.!_l (c.u, q2)J (8) 

00 

= 2_ \ <c.u') dc.u' 1/2 Im [/~) (w', q2) ± t<.!_> (w', q2)) 
7t J w <U'2-(J}2 

0 

* Here it is not necessary to pay any attention to the 
sign of the infinitely small imaginary contribution if, in­
asmuch as the factor which arises from it upon integra­
tion over the virtual states is compensated by a corre­
sponding factor which appears in front of the matrix ele­
ment, and the rule of detouring poles in the integration 

over w is determined not by the imaginary contribution 
but by our requirement on detouring the poles on the 
upper side. 
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1 (9) 
2 Re [f~l (w, q2) + f!:l (w, q2)] 

= ~ r <(!}) dw' 1/2 lm [/~) (w', q2) ± ~~) (w', q2)) 
7t ) w' w'2- w2 

0 

The symbol<~'> means that for the upper sign 
(plus) in the square brackets, we must use w' and 
for the lower sign (minus), w. On the right side of 
(8), (9), there appears an integration over the non­
physical region 0 < w'< wmin = (f:1 2 + q2 /4)%. In 
the case of forward scattering (q2 = 0, wmin = f:L)J 
only the bound states of the meson-nucleon sys­
tem make a contribution in this region. For compu­
tation of this contribution we make use of an ex­
pression for the forward scattering amplitude 1 

\ (10) 
f ± (w) = i ~ d4xeikx <PIT (j~ (x), j+- (0) 1 p). 

The imaginary part of the amplitude will be 

Im f ± (w) (11) 

= 1t ~ dxe-ikx ~ {(pI j: (x) In) <n I j ± (0) I P) 
n 

-<PI i± (0) In) <nl j: (x) / p) o (Ep- En -w)}, 

where the summation in (11) is carried out over all 
the states of the meson-nucleon system. The 

choice of signs in Eq. (11) is determined by the 
rule for detouring the poles. We make this choice, 
keeping in mind the substitution of (11) in (8), 
where the poles in the integration in w are de­

toured on the upper side. 
The only bound state in the scattering of pions 

by protons is the neutron, and the matrix element 
is (operating in terms of meson theory) the exact 
vertex part 

where g is the renormalized charge. In the given 
case, 1' 5 = y5 , inasmuch as all the external 
momenta correspond to free particles. Further 
calculations repeat those of Ref. 2 and lead 
[after subtraction from both parts of (8) of the 
real part off( f:l)] to the same expressions for the 
dispersion relations. 

In the case of the scattering aUJplitude at angles 
not equal to zero, the minimum value of w, corre­
sponding (for fixed q) to the scattering of a real 

meson,isw. =(~~ 2 +q 2/4)Y.. Ontheother 
mrn r 

hand, determining the energy w 1, beginning with 
which~-nucleon states can be realized, from 
the equality (M + f:l 2):5_ (k + p ) 2 , we find 

Thus in the interval w 1 < w < wmin on the right 
side of (8) and (9) there enters the contribution of 

the nonphysical states of the meson-nucleon sys­
tem, and this contribution cannot be calculated on 
the basis of contemporary theory. Therefore, the 
consideration of the dispersion relations makes 
sense only for small q2 , where the contribution of 
the nonphysical states is small. 

Let us first consider the spin-flip scattering 

amplitude r<~l (w, q2 ), wherein we limit our­

selves to the case q2 = 0: r<~l ( w, 0) = r<~) ( w ). 

In the nonphysical region 0 < w < 11-, the contribu­
tion gives only a bound state of one neutron. In­
asmuch as we are only interested in terms propor­
tional to q, we can calculate this contribution, 
starting with its value for the forward scattering 
amplitude. Actually, the position of the pole, with 
accuracy up to terms linear in q, remains the same 
as in the case of the amplitude of forward scatter­
ing (since all the invariants depend only on q2 ). 

The matrix element corresponding to the scattering 
amplitude can be written in the general case as 

where F 1 and F 2 are functions of the invariants 

pp ', ( p + p ')k, ( p - p ') k, which we can take at the 
value q2 = 0 in our approximation. Comparing (13) 

with the value of the matrix element for the case 
of scattering in the forward direction, we get 

Fllq•=o = 0, 

Computing (13) for these values ofF 1 and F 2 , we 

find for the contribution from the bound state, with 
accuracy up to linear terms in q, 

Im f + (w, q) (14) 
= (rrg2JM) {w- (1/2 M) ia [kk'l} o (w- Ep +En). 

The dispersion relations for the scattering amp­
litude f ~ ( w) have the form* [ f = ( p/2,11) g J 

* Equations (15) coincide with the dispersion relations 
for the spin-flip scattering amplitude obtained in Ref. 3. 
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; Re [f~l (w) + f!:_l (w)] (15) 

_ f2 <2W/f1.\ 
w2-(fL2J2M)2 I/M 

2 f w , 1/2 Im [/~)(cu') ± t!:_) (w')] 
+--;:;- J <(!)') dw w'2 -- w2 . 

u. 

We now go on to the consideration of the non­
spin-flip scattering amplitude f ( l) ( w, q2 ). As in 

the earlier case, we shall consider q 2 small, and 

in the expansion in q2 we limit ourselves to the 

zeroth and first terms. The zeroth term evidently 

gives the dispersion relations for the forward scat­
tering amplitude. For computation of the first 
term, it is appropriate to expand the region of in­
tegration on the right side of (8) to three intervals 
between the points w = w 1 and w = w - - For min 
small q2 , the first of these integrals corresponds 

to the hound state of the system meson + proton , 
i.e., the neutron, the second to the nonphysical 
states of the system meson - nucleon and the 
third to the real states of the system meson - nu­
cleon. 

It is easy to see that for small q2 the integral 
over the region w _ < w < w - is proportional to 

l m1n 
q 2 lm f( Jl-, 0) and contributes nothing in our approxi-

mation [inasmuch as lmf(Jl-, 0) =OJ. For the com­
putation of the contribution from the bound state 
we make use of the general expression for the 
scattering amplitude 1 and describe it first in the 
form which it has before the exclusion of the a­
function which describes the law of conservation 
of momentum: 

f ± ,......__, i ~ dx dy dteiCi>t-ikx+ik'y (16) 

X<p'jT[j'~(x, t),j±(y, O)]Jp) 

= ~ dx dy e-ikx+ik'y ~ f (p' I j: (x) I n)<n I j + (y) p> 

n \ !:. p- f:.n + w + te: 

+ <p' I~+,~~> ~n~~(;~ I P>} 
p n 

(The imaginary contribution was chosen from the 
condition for the detouring of the poles on the 

-upper side.) Taking the complex conjugate of (16), 
it is not difficult to see that for these terms in the 
sum over n where the denominator does not vanish, 

t*(n) (p p'· k k') = f(n) (p' p· k' k) 
± a[3 ' ' ' ±~IX ' ' ' ' 

and for the pole terms, 

t:(~)(3 (p, p'; k, k') =- t± {3<X (p', p; k', k). 

Considering the nonspin-flip scattering amplitude 

([~12 f3 ''-' oocf3),and taking it into account that in 

the coordinate system we have chosen,[+ depends 
only on the invariants pp: ( p + p ') k, ( p-- p ') k, 
which do not change upon the substitution p -> p ', 

k -> k: we come to the conclusion that the imagin­
ary part of the amplitude r<l) corresponds to the 

contribution from those terms in (16) where the 

denominator vanishes. This permits us to write it 
in the form 

Im f~l (u>, q2 ) =...: ~ dxe-ikx (17) 

x ~[<p' (j~ (x) In) <n I j± (0) I p) 
n 

X o(Ep-En+w) 

- <P' l j:±: (0) In) <n j j~ (x) I p) o (EP,- En- w)] /1 • 

(The subscript 1 denotes that it is necessary to 
separate out the part which does not contain u.) 
With the help of (17), the contribution frorr. the 
neutron state can be computed in the same way as 
was done in the case of the forward scattering 

amplitude. The computations lead to the following 

expression for the imaginary part of the amplitude 
[with accuracy up to (J1-/M) 2 ]: 

(18) 

The expansion of the integral in the region 

w . < w' < oo in powers of q2 is elementary. In 
mm 

this case we must replace J1- in the lower limit for 
the same reasons for which the integral over the 
region w < w' < w . was omitted. Collecting l mm 
the results, we obtain, after subtraction from both 
sides of the equation of its value for w = Jl-, the 
dispersion relations for r<~) ± r<:._) : 
1 iJ (19) 
2 Re oq2 [f!;_l (w, q2)+f!.!_l (w, q2)1/q•=o 

- +t)> Re diJ 2[f~l (f1., q2)±f!!_l {f1., q2)]/q•=e 
~ ~ '! co ' 

= .2 <I/M[J.2 f?2 + 2k2 \ w' , 
1 wjp,4 ) w2- (fL2!2M)2 7t' J <w) dw 

u. 

X 1/2 Im (iJ!iJq2) rJ<:l (w', q2) ± t!!_l (w: q2)] /q'=o 
(cu'2 _ <u2) (w'2 _ fL2) 
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The equations (19) can also be obtained from the 
corresponding equations of Salam 4 • 

2. PHOTOPRODUCTION OF PIONS ON NUCLEONS 

The dispersion relations for the photoproduction 
of pions on nucleons can be obtained by the method 
completely analogous to this, with the help of which 

the relations were found for the scattering of pions 
on nucleons. We shall consider the amplitudes 
of photoproduction of rr+-mesons on protons f+ ( w) 

and of 11 --mesons on neutrons f ( w) at an an ale 
- 0 

of 0°, as functions of the frequency of the quantum 

w. We shall carry out the analysis in a systen. of 
coordinates in which the sum of the !!!Omenta of the 
nucleon in the initial and final states is equal to 

zero: p + p' = 0. Here, of course, a proper system 
of coordinates corresponds to each value of the 
frequency of the quantum w. Such a choice of a 
coordinate system brings it about that the ampli­
tude of photoproduction possesses simple proper­
ties upon the replacement of w by -w. In this 
system of coordinates the energy of the quantum is 

equal to the energy of the meson and the initial 
momentum of the nucleon p is directed against the 
momentum of the quantum k and in absolute magni­
tude is equal to 

(20) 

The threshold of photoproduction lies (in this 
system) at w = Jl· Near the threshold, p reaches 

its maximum value p max = JL/2, and for large w 

(w >> JL), p ""JL 2 / 2w, i.e., it tends toward zero 
for w --> oo. Inasmuch as, &lien for p = p , the 
kinetic energy of the nucleon Ekin = Jl~ia~1, 3mev 
. max 
IS very small, we can regard the nucleons non-
relativistically with very high ace uracy. 

We note, moreover, one property of the function 
p (w) which follows from its analytic continuation 
in the region of negative w: 

p (- w) = - p (w) (21) 

(the points of the loop are detoured above). 
The analytical properties of the amplitude of 

photoproduction can be made clear by writing the 
expression analogous to (l): 

f± (w)jr = ~ K± (t, t', r, r', p) 
(t- t')' > (r- 1·')" 

(22) 

X eiw (t-r)-i (qz-hz') dt' ds 

( q = momentum of the meson), where the integra­
tion over ds is carried out in a plane perpendicular 
to the momentum of the quantum. It follows from 
(22) that f ±( w) does not have poles in the upper 
half plane. Actually, for lm w > 0 there appears in 

the integrand an exponentially decaying factor 

(fort'--> -oo ), which guarantees the convergence 
of the integral. The function K, by virtue of in­
variance, can depend on w only through the com­
binations Ekin ( t- t ') = (p 2 /2M )(t- t ')or pz '. 
Inasmucl, as the integration is not carried out over 
z ', the second of these combinations does not af­
fect the convergence of the integral. So far 
as the first is concerned, it could change the con­

vergence of the integral only if it were multiplied 

by a large factor (""' M/ J1) which is completely im­
probable, becuase Ekin must enter on a par with M. 

For the investigation of the behavior off +(w) on 

a large circle in the upper half plane of w, ;e must 
make use of the fact that as w --> oo, p tends to 
zero and q--> k. Thus, for sufficiently large w, the 
factor w [ t - t '- ( z - z ')] appears in the exponent. 

Its imaginary part is positve for Im w > 0 and tends 
toward infinity for Im w --> oo. Since the dependence 
of K on w vanishes for sufficiently large w(p--.0), 
the conclusion as to the vanishing of the function 

f +( w) on the semicircle of large radius in the 
upper half plane follows directly. 

For the photoproduction of mesons at the angle 
of 0°, the amplitude of photoproduction must have 
the form 

f ± ( w) = aeF ± ( w), (23) 

wh_ere e is the vector of polarization of the quantum 
(SinCe the amplitude must be pseudoscalar and 
must contain e linearly). The function F +( w) has 

the same analytical properties as the function 

f ±< 0) anci consequently satisfies the relation (3). 
The connection of F ( w) with F (- w) can be 

o~tained, as in .the case of the scattering of pions, 
Wtth the help of a consideration of an arbitrary 
matrix element M ±o: f3 (p, p '; k, q ), which corre-

sponds to a certain Feynman diagram. Such a con­

si~.eration yie~ds the fact that M*±o:j3 (p ', p; -k, -q) 
= dJ + f3 o: ( p, p ; k, q ). M depends only on the in-

variants pp ~ ( p + p ') k, ( p - p ') k, which, in our 
system of coordinates are, respectively, pp' 
= E! + p 2 , ( p + p ') k = 2 E P w, ( p - p ') k = 2 pw. 

It is evident from these equations that the substitu­

tion p-> p ~ k --> -k is equivalent to the substitution 

w--> -w. Taking into account Eq. (23) and the 
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Hermitian character of the matrices a, we find 

F~(w) = F_(-w). (24) 

Thus ~ ( F + + F _) and ~H F +- F _) satisfy Eq. 
(8). 

In order to remove from consideration in the 
integral of the imaginary part of the amplitude the 
region below the threshold of photoproduction 
( w < 11 in the chosen coordinate system), we can 
make use of the phase equality pointed out by 
Fermi 5 for scattering and photoproduction of pions. 
Inasmuch as for scattering of pions, the phases are 
purely imaginary for w < 11• then for photoproduction 
in the corresponding states of the nascent pions, 
the phases will also he purely imaginary for w < 11· 
Consequently, the imaginary parts of the functions 
F i' which are obtained after exclusion (from the 
expression for the amplitude ) of the factor a e, 

must vanish for 0 < w < 11· 
The contribution of the hound state requires 

separate consideration. In the case of photopro­
duction of pions, this could he a proton (or a 
neutron). The energy En of this hound state ought 
to he determined (in a way similar to what takes 
place in the scattering of pions by nucleons) by 
one of the equalities E ±w-E = 0, where the P n 
momentum is Pn = p '+ k or Pn = p - k. With the 
help of these equalities, it is easy to find that the 
hound state corresponds tow= 0, i.e., to the elec­
tromagnetic field with constant potential. Such a 
field, by virtue of gauge invariance, can contribute 
nothing to the amplitude of photoproducti~n, so that 
the contribution from the hound state alsb vanishes. 
To sum up, the dispersion relations for the ampli­
tude of photoproduction take the form 

1 
2 Re[F+(w)+F_(w)] 

(X) 

(25) 

= : (' < :') %1m [F+ (c.u') ± F_ (c.u')] dw', 
" .) ~ c.u'2_ c.u2 

where the integration on the right hegins at the 
threshold of photoproduction ( w = 11). 

The amplitude of photoproduction of a single 
pion ought to tend to zero for high energies, as 
also each amplitude of a definite inelastic pro­
cess6 • 7 • Therefore, the integrals in (25) ought to 
converge. The dispersion relation for the ampli­
tude of photoproduction of 11°-mesons has a form 
identical with the relation for ~ ( F + + F _ ). 

3. SCATTERING OF NUCLEONS AND ANTINUCLEONS 
BY NUCLEONS 

The dispersion relations for the scattering of 
nucleons by nucleons were considered in a paper 
by Fainberg and Fradkin8 • Their method was an-
alogous to the method of Goldberger 1• We shall 
show hov. these relations can he obtained by means 
of our method. 

We limit ourselves to the case of forward scat-
tering. We shall consider the scattering amplitude 
of protons by protons f+ and antiprotons by pro­
tons{_, in the laboratory system of coordinates, as 
functions of the energy of the incident particle, 
neglecting the Coulomb interaction. We shall con­
sider both the incident particle and the particle at 
rest to pe polarized in (or against) the direction 
of the momentum of the incident particle. We intro­
duce the notation: r, s for the polarization of the 
incident and the second particle before the colli­
sion, and r: s' after collision ( r, s, r ', s '= ±l ). 

Proof of the fact that the scattering amplitude 
has no poles in the upper half plane of w, and vanishes 
(or at least does not increase) on a semicircle of 
large radius, runs identically with that for the case 
of scattering of pions on nucleons and leads, on 
the basis of Cauchy's theorem, to a relation similar 
to (3). In order to investigate the relation of the 
scattering amplitude of proton-proton for positive 
w with the scattering amplitude of antiproton-pro­
ton for negative w, we consider an arbitrary rna-

. 1 ~Jn one x ( ' ' ' ') tnx e ement It++ p 1, p 1 ; p 2 , p 2 ; r, r; s, s 

( p 1, pi are the 4-momenta of the incident particle, 
p 2 , p; of the second particle). The nonexchange 
matrix element can be written in the form 

M nonex 1 ' , 

++ \PI• P1; P2. P2; r, r'; s, s') 

= ll' (p~) MI (p~, PI) u' (PI) 

X£?' (p~) M2 (p;, P2) us (P2), 

where, for example, u' ( p 1 ) is a spin or correspond­
ing to the 4-momentum p 1 and polarization r. We 
make the substitutions p 1 -> -p 1 • Pi-> -p;_, p 2 

-> p;, s -> s 'in Eq. (26), and take its con.plex con­
jugate. We get 

M::onex(- PI• - p;; P~· p2; r, r'; .s'; s) 

= u'(-PI)Ml(-pl,- P;)u'' (-p~) 
(27) 

X us' (p~) M 2 (p;, P2) us (P2). 
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The right-hand side of Eq. (27) is the scattering 
matrix element for the antiproton (with momentum 
p 1 ) by the proton (with momentum p 2 and polariza­
tion s ). Here ur (- p 1 ) is the spin or correspond­
ing to the negative energy - E 1 and polarization r. 
The spinor v ( p ), which represents the wave func­
tion of the antiproton, is connected with u ( -p) by 
means of the matrix of charge conjugation v ( p) 
= u* ( -p) C. Making use of the explicit form of the 
matrix C, it is not difficult to prove that in the 
case of nucleons polarized along (or against) the 
direction of the momentum, the polarization r of the 
spinor with negative energy u (- p) corresponds to 
the polarization - r of the spin or with positive 
energy v ( p ). Thus 

* none x( ' . ' . '. ' ) M++ -pl,- P1, p2, P2• r, r, s ,s (28) 
M nonex(p p' · p p' · r r' · s s') = - 1• 1' 2• 2'- 1- ' ' . 

For the exchange matrix element there is an 
analogous relation with just this difference, that 
the right side corresponds to a diagram in which the 
nucleon and antinucleon lines exchange their 
roles. 

In the laboratory system of coordinates, E 2 = E ~ 
= M, p 2 = p~ = 0 and the vector p 1 = p~ cannot 

enter linearly since the polarizations are pseudo­

scalars. Therefore, the substitutionp 1 -+-p 1 .p~-+-p~. 
p 2 -+ p ~ is equivalent to the substitution w-+ -w, 

which permits us to write for the scattering ampli­
tude [on the basis of Eq. (28)]: 

f+(-w;r,r';s,s') (29) 

= f_ (w;- r-- r'· s' s) ' , , . 
Below we shalf be interested only in coherent 

scattering without change in the spin of each of the 
particles: r = r ', s = s '. We denote the amplitude 
of such scattering by {f_ s ( w). Then, from (3), 

with the help of Eq. (29), we get the two relations 

1 
2 Re lf+ s (w) + f='· s (w)l (30) 

- ~ Re rt+ s (M) ± t=r· s (M)] 

= ~ (w2-M2)• 
'It 

' 
(To assure convergence of the integrals, we sub-
tract from each part of the equation its value for 
w = M.) 

In order to make clear the properties of the 
imaginary part of the forward scattering amplitude 
in the interval 0 < w < M, we return to the general 
expressions for the amplitudes, which have the 
form: 

f+s (w) (31) 

= i 2: ~ d4xe-ip,x u~ (pl) <Pz, sIT [XIX (x), 

f !_• s (w) = i 2: ~ d4xe-ip,x u~ (- p~) (31 ') 

X (p2, s I T [XIX (0), ~ (x)] I p2, s) u~ ( -Pl)' 

In (31), (31'), X ( x) denotes the interaction oper­
ator standing on the right-hand side of the equation 
for the nucleon Y,-function in the Heisenberg repre­
sentation: 

iv.OIJI (x)joxv.- mljl (x) = x (x). 

In the. case of a pseudoscalar symmetric theory, 
X ( x) = tg Ti Y 5 if! ( x) cpi ( x ). Considering that the 

interaction is carried out by pseudoscalar mesons, 
we omit, on the right side of (31), (31'), terms pro­
portional to iT r ( p 1 ) y ur ( p 1 ), which vanish for for­
ward scattering. The imaginary part of the ampli­
tude of scattering can be written in the form of a 
sum over the entire system In > of intermediate 
states: 

Im f+ s (w) = ~ ~ ~ dxe-ip,x u; (p1) 

n 
(32) 

X [ (p2, s I XIX (x) In) <n lx[3 (0) I P2, s) 

X o(M -En +w) 

+ (p2, s I i 13 (0) In) (n I XJ. (x) I P2 • 

s) o (M-En- w)] u~ (p1); 

Im f':.:_ s (w) = ~ ~ ~ dxe-ip,x 14 ( _ p1 ) (32') 
n 

X [ (p2, s I x[3 (x) In> <n I XIX (0) I Pg' s) 

X 0 (M-En +w)+<P2' s I Xa (0) In) <n rx[3 (x) I p2, 

s) o (M-En -w)J ua (-p1). 

[The sign before the second terms in parentheses 



542 B. L. JOFFE 

in Eqs. (32) and (32 ') are chosen from the condition 
of detouring the poles above.] Dy virtue of the 
law of conservation of momentum, the total momen­
tum in the intermediate state is p = + p. It is not 

n -
difficult to see that the second term of (32 ') is in 
fac~ equal to zero. Actually, in this term, only 
states with two or more nucleons can give a con-

tribution in the sum over n. Since the momentum of 
such a state must he equal top, then En 

> -,1( 2M) 2 + p 2 and En+ w is always larger than 
M (even for w < :1! ). In the first term of Eq. (32), 
only states with two or more nucleons also can enter 

intothesumovern, i.e.,En>',f(2M)2 + p2. It then 

follows that the quantity M - En + w < M 

_ V (2M) 2 + p 2 + w in the o-function cannot van­

ish for w < M. Thus, for w < M, only the second 
term of (32) and the first of (32 ') can be different 

from zero. 
In the second term of (32), there can enter as 

intermediate states those of one, two and more 
mesons. The contribution of the state with a single 
meson can be calculated precisely, since the 
matrix element is an exact vertex part*. We have 

I f r,s w / , 
m -r1 = ~ \P1, 

s I g ~ (0) T5"au' (PJ) Cfa (0)/ n)i 2 ~ (M 

- Vrt2 + p2 -- (•)) 

(33) 

= - "'g2 (p. j 2M)2(w / M)o,, s~ ( w- M + J~-). 
It is of interest to note that the pole lies only 

/1 2 I 2M ( "-' 5 mev in the center-of-mass system ) 
lower than the zero of the kinetic energy. The 
contribution of intermediate states with two and 
more mesons cannot he computed on the basis of 
contei!Jporary theory. It can only he pointed out 
that these states have especially high energy, so 

that, for example, the term in the imaginary part, 
corresponding to a two-meson intermediate state, 
will differ from zero only for- ( w- M) < 4/1 2 I 2M 

and, naturally, will not have the character of a o­
function. 

The first term in (32 ') corresponds to processes 
of annihilation of the antinucleon with the nucleon. 
It is not difficult to verify that in the intermediate 
state here there ought to he at least two pions, so 
that for w < M, a ternJ analogous to (33) does not 
arise. 

~ There can be no intermedi~te state with a single /\.­
meson because of the conservation of strangeness. 

Besides the pole in the scattering amplitude 
which corresponds to a single-meson intermediate 

state, one needs to take into consideration another 

pole arising from the virtual level (with energy f) 

of a system of two protons in the 1S state. 
Finally, we get the following dispersion rela­

tions for the scattering of protons by protons and 
antiprotons by protons*: 

Re[f'; 8 (<u)-~(1 ±~)f~s(M) 

- { ( 1 + ~) ~-~s ( M) J 
w~-M2 t'\ 

(34) 

--- f'' 1 .--1.....-'~ 

I fl-2 w - M + !l-2 I 2M (jr. s 

:!. w--M i) ---- < -r.s) 
V Me:l w-M+el 0 

.W-4 _t'_ 
( 2M 

1 ~ dw' 
+,· -=-., (·w~ - M 2 ) \ ~-~ 

.. l w'2 --M~ 
0 

M 

+~ 
dw' lm t='' 8 (w') ) 

-w~'""2 -...,.M~2 w' ± w f 
() 

lm P; 5 (w') 

w' =j=w 

w2- N/2 C dw' 1 J crf. 8 (w') cr='· 8 (w')\ 
+ 2rr2 ,) J!-w'2 _ M2 2l w' =j= w + w' ± w f . 

M 

As a consequence of the fact that in the first part 
of the dispersion relations there enter integrals 
from the imaginary parts in the energy region w <111, 
it is not clear whether they can he proved to he any 
sort of poles. Some interest attaches to the esti­
mate of the first "pole" term in the right-hand side 
of (34) which arises from the single meson inter­

mediate state. Since this term contains or, s and is 
proportional to p 2 for small momenta, it must he 
related to the 3 P state. Estimating the remaining 
terms in the first part of (34), we can see that for 
small energies they all (except the third) are 
considerably smaller than the first (at least in the 
ratio f.liM ). The third term does not contain a small 
parameter in corr,parison with the first, hut inas­
much as integration over w '- M is begun in it with 
an energy four times larger than the "kinetic" 
energy of the point of the pole in the first term, and 
extends to M, a basis is provided for thinking that 

* For the scattering of protons and antiprotons _by neu­
trons, the san1e relations hold, only with this difterence: 
the pole term from the single meson intermediate state 
will be twice as large and a contribution is added from 
the bound state---the deuteron. 
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it also cannot in any appreciable degree compen­
sate the "pole" term at low energies ( wkin 
"' J.L 2/ 2M). If we consider that the "pole" term 
cannot compensate the remaining terms at low ener­
gies, then with its help we can determine the P­
phase in the proton-proton scattering. (It amounts 
to about l 0 at an energy of 5 mev in the laboratory 
system.) Unfortunately, the experimental data 
presently available on this problem are sufficiently 
indeterminate, although they lend support to the 
idea that the P-phase at these energies is some­
what smaller9 . If making the experimental data 
more precise shows that the P-phase is actually 
significantly less than that value which is required 
by the "poie" terms, then this will mean that the 
role of the third and fourth terms in (34) (which 
could not be determined from experiment) is sig­
nificant even for small energies (except for the 
trivial case in which all the scattering is deter­
mined by a virtual level). This possibly reduces 
to zero the value of the dispersion relations in the 
nucleon-nucleon scattering. 

4. CONCLUSION 

The method carried out above of obtaining the 
dispersion relations was actually based on only 
one assumption: the impossibility of the propaga­
tion of signals with velocities exceeding that of 
light, inasmuch as all the other considerations 
(the replacement of w by - w, and the calculation 
of the contribution from the poles) possess only 
an auxiliary character and could be replaced by 
other considerations which do not make use of the 
concept of the S-matrix in its present-day form. 
Therefore, the question is of great interest as to 
whether it is necessary to require the validity of 
these conditions for microscopic distances or 
whether it is sufficient to limit oneself to the 
macroscopic where such an assumption raises no 
doubt. The conclusion set forth above permits us 
to .bring forth some arguments in support of the 
following possibility*. Actually, we assume that 
the region of propagation of the interaction is not 
limited by the light cone but extends over some 
small region beyond it, i.e., for example, that the 
signals can reach a point r, t from all points r ', 
t'which satisfy the condition (t- t')2- (r- r') 2 

> - l ~; l 0 is some constant of the order of a 
nuclear distance. We assume, and this is essential, 

* Our attention was called to this point by I. Ia. 
Pomeranchuk. 

that the condition which violates causality is super­
posed in the interval, because in the opposite 
case it would be difficult to represent that the 
violation of causality in a small region in one 
system of coordinates wou.ld not become a viola-
tion of causality in a large region in another sys­
tem. Then, for example, in the case of scattering 
of pions by nucleons, we would have for the ampli­
tude of the forward scattering [in place of Eq. (2)] 

f±(w)jr=~d-cd~dYJK=(-r, p,r, t)ei"'o;-ik~.(35) 
P'- T 2 + l~. 

The demonstration of the absence of poles in the 
upper halfplane evidently remains without change. 

We consider the behavior off+~ w) on a large semi­
circle. Let ~ = 7J = 0 (this is -the worst case). 
Then it is evident that for large (( ( is a macro­

scopic distance), the lower limit of the integration 

overT is equal toT . = ( -l 02/ 2{. and conse-
min "" 

quently, for sufficiently large (the correction due 
to l 0 different from zero can be made arbitrarily 
small. At first glance, it would seem that, from 

the presence of a finite mass, it is impossible in 
Eq. (35) to extend (to infinity, since in this case 

the exponent would be equal to exp! -7:; i [ w l~/ ( 
- J.L 2(/ w] l (if 7= Tmin and w >> J.L) and, there­
fore, for w = in gives an exponentially increasing 
function. This difficulty could be avoided in the 
following fashion. We choose a sufficiently large 

(macroscopic) 'and let w = n ei q; n rv J.L (/ lo. 
Then the exponent wi 11 be of the order w l 0 .:5 1. 
Along with this, multiplying f ±( w) by a suffi­
ciently rapidly decreasing function, we can become 

convinced that the integral of f +( w) over the large 
semicircle of radius U will be v~ry small (in the 

ratio of sorr.e power of l of () and the dispersion 
relations are preserved. In practice, the form of 
this function, by which it is necessary to multiply 

f+(w) is determined by the behavior of f±(w) 
o~ the real axis, i.e., by the behavior of the cross 

section for large w. Consequently, in the model 
considered, the violation of causality in the small 
region does not change in the course of the proof*. 

* For the case of the scattering of gamma quanta, the 
conclusion that the dispersion relations do not change if 
the condition of causality is violated in the small, can 
be obtained also from the results of Ref. 10 if, in ob­
taining Eq,,(3.19) of this paper from (3.18), we intro­
duce a condition imposed in the interval that violates 
causality. 
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However, we can choose the condition that violates 
causality in some fashion which does not impose 
it in the interval. I!ere, generally speaking, one 
chould expect that the dispersion relations will no 
longer be maintained. 

We have therefore come to the following conclu-
sion: if the experimental data are in contradiction 
with the dispersion relations, then this will mean 
that at sn,all distances, the propagation of signals 
with velocities exceeding that of light can go on; 
at the same time, in accord with experimental data 
with dispersion relations, we cannot exclude the 
violation of causality at small distances, in par­
ticular the propagation of the reaction between two 
points lying not inside the light cone but inside the 

hyperboloid appears to be possible. 
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The effect of field growth is investigated in a region where the plasma dielectric con­
stant becomes zero. The problem of the absorption influence is fully explained. The 
relationship between this effect and plasma resonance is established. 

I \i solving the problem of propagation of electro-
magnetic waves in an inhomogeneous plano­

stratified medium the simplest case is that ofnormal 
incidence. Under the conditions of coumlete re­
flection it is most convenient to use the,linear 
approximation of the dielectric constant f (z) in the 

neighborhood of its zero (point of reflection). In 
fact, the consideration of this simplest case 
enables one to explain completely the field of a 
standing wave in the reflection ree-ion (see flef. l, 
Sec. 66). An analogous situation '~ccurs for 
obli<:Jue incidence. 

Zhekulin 2 carried out a detailed investigation of 
solutions describing the oblique incidenc~ of 

radio waves on a plano-stratified isotropic iono­
sphere. In such a medium waves with different 
polarizations of the electric vector E (perpendicular 
and parallel to the incidence plane) are propagated 
independently of each other. It turns out that the 
reflection problem of the wave, with an electric 
vector perpendicular to the incidence plane, does 
not differ in principle from the well known case of 
normal incidence. They differ only in the displace­
ment of the incident wave reflection level. How­
ever, the equation describing the wave with a 
different polarization of the electric vector is of 
a more specific type; in this case, the point at 
which the dielectric constant of the medium f, 

f (z) becomes zero is a singularity. Zhekulin 
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