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A method of calculating the energy levels in a quasiclassical quantization is presented 
for the one-dimensional case. The value of the levels is obtained in the form of in expansion 
fr. U_nder _certain assumptions on the form of the potential energy U ( x ), this expansion can be 
obtamed m a general form. Computations are carried out for a potential energy having a mini­
mum and rising on either side of the minimum, i.e., of an oscillator type. 

AS is well known, in the quasiclassical method 
for the solution of the problems of quantum 

mechanics, the wave equation t/; is written in the 
forn1 

(1) 

Making this formal substitution in the Schrodinger 
equation 

Ll~ + (2!L/h2 ) (E- U) = 0, (2) 

we obtain an equation for the function a: 

(vcr)2 + (hji) Llcr = 2[1- (E- U). (3) 

The formal solution of Eq. (3) is written in the form 
of a power series in fr: 

cr = cr0 + (h/i) cr1 + (h/i)2 cr2 + . . . (4) 

Substituting (4) in (3), we ultimately get, for the 
one-dimensional case, 

cr~ = p; cr~ =- p'j2p; cr; = p"j4p2 _ 3p'2j8p3; (5) 

IJ~ =- p"'j8p3 + 3p"p'j4p4 - 3p'3j4p5; 

cr~ = pUVljJ6p4 _ 5p"'p'j8p5 

- 13p"2/32p5 + 99p"p'2j32p6 

-297p'4/128p7 ; ••• , 

where p = y2f:L(E- U) is the classical momentum. 

two components which define the phase and modu­
lus of the wave function: 

(6) 

Another linearly independent solution of the 
Schrodinger equation is obtained by substituting 
i-> -i in Eq. (6). For imaginary p, all the expres­
sions in the exponent are real. 

Let x =a be a turning point, i.e., U (a)= E. Let 
us find the phase of the wave function for x > a, 
considering that, in this region, E > U ( x ), and in 
the region x <a, E < U ( x ), and the modulus of the 
wave function decreases with decreasing x. Solving 
the Schrodinger equation exactly in the neighborhood 
of the turning point, where the potential energy can 
be approximated by a linear function of the coordin­
ate x, and joining the exact solution with the 
quasiclassical one, we obtain an expression for the 
phase, as is usually done. The exact solution of 
the Schrodinger equation with a linear potential 
which satisfies the conditions set forth above has 
the form (except for a constant multiplier) 

•) = / VfTIU-•f,(f/~[' 1•) +1•/,(fi~['/•)], x<O; 

' l Vf[J-•1, ( ~ ~·'·) + J.1, ( f ~·r,)J, x > 0, 

~ = !Y.Xjh'", IX = V 2!1- (-au ;axla. 

Forrealp, the quantities a~, ai, ... anda0 , a 1, ... are real, 
and the quantity a can be uniquely divided into 
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Its asymptotic expansion for lr--> 0 can be written 
for x > 0 in the form* 

2 r~-x'lz 7t 5 fi 1105 1L3 

The phase of 3--=ri: + 4- 48 r~-x'i• + 9216 r~.ax'l• 

must be joined with the phase of the function 

(8) 

close to x == a, determining the unknown constant 
in this case. 

At the point x ==a, the momentum p vanishes; if 
x is considered as a complex variable, then for 
p ( x ), the point x ==a is a branch point in which 
p (x) is a double-valued function. The functions 
a~. a~. a~ .... are also double-valued from the 

branch point for x =a, as is evident from Eq. (5). 
To obtain the functions a 0 , a 2 , a 4 , •.• , it is 

appropriate to carry out the transformation from 
ordinary to contour integration, since the func­
tions a~, a~, ... go to infinity for x =a. We 
make a cut in the complex plane x, going to the 
right from the point x = a; on the bottom side of the 
cut, let the square root take the positive sign, and 
on the upper side, the negative sign. Then the 
integral over x reduces to one-half the integral over 
the loop in which we go around from the point x on 
the upper side of the cut surrounding the point 
x = a and proceed to the point x on the lower side 
of the cut. 

.r-a 

FIG. 1 

* The series in the exponent and in the sine argument 

are determined identically. Upon expansion of the ex­
ponent and the sine in powers of ~-3/2, we obtain an 
asymptotic expansion in a series in the usual form, 
keeping all successive terms of the expansion up to 
terms of that order which they have in the exponent and 
in the sine argument. 

For such a determination of the functions a 0 , 

a 2 , a 4 , ..• , we have 

cr0 = 1/ 2 ~ cr~ dx; 
c, 

(9) 

cr2 = 1/ 2 ~ a;dx; 
c, 

~-I;\ 'd ~4 - 2 j cr4 X, ••. 

c, 

Comparing (6), (7) and (9), for x close to a, we ob­
tain for the phase the value 

where the a 0 , a 2 , a 4 , ••. are determined by Eqs. 
(9). 

We now consider a forru of the potential energy 
U ( x) in which there are two turning points, x = a, 
x = b, where for a < x < b, U ( x) < E, and in the 
rest of the region, U(x)> E. The wave function 
which vanishes for x < a has (for x > a) the form 
(it can be considered real), except for a constant 
multiplier, 

where the a 0 , a 2 , a 4 , •.• are determined byEqs. 
(9). The wave function which vanishes for x > b 
has (for x < b) the form 

(12) 

where the s 0 , s 2 , s 4 , •.• are determined by 

s0 = 1/ 2 ~ a~dx; (13) 
c, 

S2 = 1/2\ a;dx; s4 = 1/ 2 ~ cr~dx, ... 
Cz C2 

The contour C 2 is a loop surrounding the point 
x = b in a counter-clockwise direction, in which 
the cut is taken from the point x = b to the left; on 
the lower side of the cut the square root is positive, 
on the upper side it is negative. 

:r z-ff 

s 
FIG. 2 
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The wave function of the energy level must vanish 

for x <a and x > b; the decompositions (11) and 
(12) represent one and the same function; there­
fore, the phases determined by Eqs.(ll) and (12) 
must in total give an integral multiple of rr, which 
leads to the condition 

~ cr~dx- h2 ~ cr;dx (14) 
c c 

+ h 4 ~ cr~dx- ... = (n + 1/ 2) 27tt~, 
c 

where the a~. a~, a~ •... are determined by Eqs. 

(5), n = 0, 1, 2, ... , and the closed integration con­
tour C surrounds the points x = a and x = b in the 
counter-clockwise direction. The condition (14) is 
the exact quantization rule of Bohr. 

c 

FIG. 3 

The quantities a~, a~, a~, ... entering into (14) 

are equal, according to Eq. (5), to the following: 

cr~ = lf2t.t (E- U); (15) 

cr~ = - V"j8 V2tL (E- V)'lz 

- 5V'2/32 V2[L (E- V)'l•; 
cr~ = - lJUV)j32 (2[L)'Iz (£- U)';• 

-7V"'V' j32 (2tL)'I• (E- V)'l• 
- 19V'12/l28 (2tL)''• (E- U)'l• 

-221 V"V'2/256 (2tL)''• (E- V)'l• 
- 1105U'4j2048 (2tL)'Iz (E -- U)"l>, ... 

We carry out the integration in Eq. (14) in the 
general form under the supposition that the potential 
energy U ( x) at a certain point has a minimum, and 
at points x = a and x = b, U (a) = U (b) =E. We 
locate the origin of the coordinates at U ( x) so that 
U ( 0) = 0, U '( 0) = 0. We displace the contour of 
integration C which surrounds the points x = a and 
x = b in the complex plane x so that the condition 
E < I U ( x) I is satisfied on it, which pernits us to 
expand the function (15) in a series in E. This 
can be accomplished in each case if the singular 
points of the function yl E - U ( x) are sufficiently 
far from the points x = a, x = b. 

Thus, over the entire path of integration, cut 
longitudinally by the method described above, we 
have 

, ·v- .. /-E cr0 = t 2[LV V 1 - U (16) 

= i ,,r2V {t ~ _;_ __£_- ___!_ (~)2- --..!.2_ (~ '3 
V [L ~ U L·4 U ~·4·6 U j 

1·3·5 ( E )4 } 
-~TJ - ... ; 

cr; = _ iU" { l + ~ ~ -l- 3. 5 ( E )2 l 
sy2fLu'J• ~ u ' 2·4 u + · · ·s 

-l- ~ iU'2 {t + ~ F 5.7 ( !}_)2 } . 
' 32 V 2[LU'I• ~ [j + ~ · 4 \ U + . · · ' 

iU(IV) 7 iU'"U' 19 iU"2 

3~ (2fL)''•u''• - 32 (2fL)''•u''• - 128 (2fL)''•u''• 

221 iU"U' 2 1105 iU'4 
+ 256 (2fL)'I•u'lz - ::.048 (2fL)'I•ifl• + · · · ' 

Substituting (16) in (14), we obtain an equation for 
E, the solution of which is to he sought in the form 
of a series in fr : 

V~E~ 3U" El 25U'2El ) 
- 16U''• + 16 v~[Lu''• - 64 V2[LV''• 

+ n4 (- Vi[LE4 _ V~E1E3 
2u·1· 4U'I• 

V~E; 3 v ~Ei£2 5 V~Ei 
- su'l• - 16U'I• 128U'1• 

3U"E 15U"E2 + 2 + 1 
16 V2[LV''• 64 V2[L!J'I• 

_ 25[}'2£2 175U'2£i 

64 V 2[LU'Iz 256 V 2[LU'I• 
uUV) 7U"'0' 

+ 32 (2[1.)312 u'lz 32 (2[L)''•u'lz 

19U"2 221U" U'2 

- 128 (2fL)'I•u''• + 256 (2f1.)' 1•u'1• 

- •1 n 1 + . . . = n + -2 27th . 1105[}'4 ) } ( 1) 
2048 (2[1.) z u z 
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Equating terms with equal powers of fr:, w: can, 
term by term, find the coefficients of the senes 
(17). The term without fr: is identically equal to 
zero, since the integrand +y U ( x) is a single­
valued function which has no singularities inside 
the contour C [we recall that U ( 0) = 0, U'( 0) =0 ]. 

The terms for h: give 

- i JI2(LEI ct~ dx = ( n + _!_) 2~: 
2 Y VD \ 2 . 

c 
The function under the integral, 1/ +y U ( x ), is a 
single-valued function having one pole within the 
contour C (at x = 0) with residue 

V2/U II (0), 

therefore, 

(18) 

Equating to zero the terms in h: 2 , we take it into 
consideration that each of the components in the 
integrand is single-valued inside the contour C and 
has a single pole at x = 0 with a corresponding 
residue. Computing these residues and using E 1 

from (18), we obtain 

(19) 

7U"'2 (0) 1 ] 

9U"2 (0)) . 

Additional coefficients in the expansion (17) are 
computed in sin1ilar fashion. Thus, 

£ 3 = 7ia {(n + f Y( u(VI) (0) 

fL'I• VU" (0) 288 U"(O) 

17U(IV)' (0) 

8U" 2 (0) 
7U(V) (0) U"'(O) 

U" 2 (0) 

75U(IV) (0) U"'2 (0) 235U'"4(0) · 
+ 4U" 3 (0) - 24U"4 (0)) 

5 ( i ) (U(Vl) (0) B7U(IVJ2(0) 
+ 1152 n + 2 U" (0) - 40U" 2 (0) 

19U(V} (0) U"' (0) 

5U" 2 (0) 

(20) 

153U(IV) (0) U"'2 (0) 

'20U" 3 (0) 
77U"'4 (0))} 
24U" 4 (0) . 

The tern, E 1 corresponds to a hannonic oscilla­
tor, while the subsequent terms are determined by 
the departure from harmonicity. 

Equations (17)-(20) give a better approximation 
for small n, i.e., for the lower levels. 

1 L. Landau and E. Lifshitz, Quantum Mechanics, 
GITTL, 1948. 
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