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It is shown that the law of conservation of momentum in the electron-phonon system may 
not necessarily hold in the case of scattering of electrons by the thermal vibrations in a 

liquid, as a consequence of the absence of strict periodicity in a liquid conductor, There­
fore, in addition to the usual scattering of electrons by the phonons in a liquid, there exists 
an additional phonon-liquid scattering. The electron mean free path length corresponding to 
this scattering in liquid metals and semiconductors has been computed, 

l. INTRODUCTION 

Q UANTUl\1-mechanical investigation shows 1 that 
the behavior of electrons in a liquid is 

similar to the behavior of electrons in a crystal; in 
particular, the electrons have a band energy spec­
trum and move as quasi-free particles. The scatter­
ing of electrons as a consequence of the disruption 
of long range order in liquids was calculated in He£. 
2. But, in addition to this scattering, which is 
specific to the liquid, there takes place (just as 
in crystals) a scattering of the electrons by the 
thermal vibrations which can play a dominant role 
at a high temperature of fusion. In the present re­
search, we consider the scattering of electrons in 
the liquid by the themtal vibrations. 

It was shown in Ref. 2 that the quasi-Bloch 
functions of the form 

h - G-'l•u (~) eikr 'rk- k ~ ' (l) 

are an excellent zeroth approximation for the de­
scription of the electrons in the liquid. Here k is 
the wave vector of the electron and ulr( t) is a 
function which is almost periodic in the deformed 

coordinate system tin which the self-consistent 
potential for the electron in the liquid is periodic 
(see Ref. l ). 

Thermal vibrations are considered in the theory 
of electrical conduction in the approximation of an 
elastic continuum, and the discreteness of the lat­
tice is taken into account only for the determina­
tion of the limiting wave number of the phonons. It 
is natural that in this approximation there is no 
difference between crystal and liquid, so that we 
can use as the phonon, wave functions the same 
functions as in the theory of solids. Knowing the 
unperturbed wave functions (l) for the electrons, 
and making use of the usual functions for the pho­
nons, we can repeat all the calculations for the 
liquid that have been used for solid conductors. 

If we consider the interaction between electrons 
and phonons as a small perturbation, then the 
eigenfunction of the unperturbed problem is the 
product of the electron function and a function of 
all the oscillators of the lattice, and we can expand 
the wave function of the perturbed problem in a 
series of these products: 
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w (t) = ~c (k, Nqj.tH~ (r) n YNqj (aqj) 
q. j 

(2) 1/Jk ,( r ), be represented in the form of a sum of in­
tegrals over the C 3 deformed elementary cells: 

xexp{- ~ [Ek+~2:(Nq1 +})tH<>q1]}. 
q I 

As is known from Eq. (34. 7) of Ref. 3, the ex­
pansion coefficients of c depend on the time and, 
for small t, satisfy the equation 

ihc (k', N~) = ~ f (k', Nq1) Uy (k, Nq1) d-r: (3) 

xexp{ ~ [Ek'- Ek + ~ ~(N~1 - Nqi) nwqi ]} . 
q I 

The symbols here are standard: k and k' are the 

wave vectors of the electron; q is the wave vector 
of the phonon; j is the direction of its polarization; 
N . is the number of phonons with wave vector q 

q) , 
and polarization direction j; E k and E k' are the 
energies of the electron for the corresponding 

index values of the wave vector, w .is the fre­

quency of a phonon with given q and1 j. Integration 
over d T consists of integration both over the radius 

vector of the electron, r, and over the oscillator 

coordinates a .. 
The perturb~iion energy U has a different ex­

pression in the cases of acoustical and optical 
thermal vibrations. Initially, we shall consider 
the scattering by acoustical vibrations---the only 
vibrations in metals and atomic semiconductors. 

2. MEASUREMENT OF THE ELECTRON DISTRIBUTION 
FUNCTION UNDER THE ACTION OF 

THERMAL VIBRATIONS 

In the deformed-ions approximation the perturba­
tion energy is equal to 

U = -ugradV, 

where V is the self-consistent potential for the 
electron and u is the displacement of the ions or 
atoms in the thermal vibrations: 

3 

(4) 

u = a-'!• "' "'e . (a ·eiqr + a* .e-iqr) (5) ...:::.J ~ q] q, q] ' 
q i=l 

G 3 is the number of atoms in the elementary cell, 
e . is the state Jf polarization of the phonons. 
qThe integral over the electron coordinates in Eq. 

(3) can, after substitution of Eq. (l) for if k ( r) and 

K~ =a-a ~.ei(k I q-k')n s ei(k lq-k')r' 
n 

(6) 

X grad V (r') uk (r') u~, (r') d-r:0, 

where n is the radius vector of then th site, r' 
= r- n. 

In a crystal, as a consequence of the periodicity 
of V ( r) and uk( r ), the integral over the elementary 

cell does not depend on the number of cells, but 
the values of the vector n form a regular lattice 
in space. Therefore, the sum over n differs from 
zero only if 

k+ q = k'; (7) 

the sign ( +) refers to K+ and the sign (-) to K-·. 
Physically, the condition (7) signifies the law of 
conservation of momentum in the electron-phonon 
system, since K+ describes the absorption of a 

phonon and K- the emission of one. Under the 
condition (7), summation over n simply yields the 
factor G 3 • 

As noted in Ref. 2, uk for a liquid, in the iso­
tropic approximation, is a periodic function of the 
deformed coordinates I;; therefore, when condition 
(7) is satisfied, the integral over the deformed ele­
mentary cell does not depend on the number of cells, 
with accuracy up to a small quantity of order f---the 
degree of disruption of local order, i.e., the rela­
tive deformation of the elementary cell. There is 
no point to keeping a correction of order f, since 
the perturbation itself is taken to be a small 
quantity, and these corrections would be of second 
order of smallness. Thus, when condition (7) is 
satisfied, the situation in the liquid is no different 
from that in the crystal. 

It is easy to see that all subsequent calculations 
carried out for crystals will be valid with accuracy 
to corrections of order f and the same results will 
be given for liquids. This is purely phonon scat­
tering of the electrons, which is entirely independ­
ent of the disruption of long range order in the 
liquid. 

However, if Eq. (7) is not observed, then it is 
not possible, in the case of a liquid, to prove that 
the sum over n [in Eq. (6)] vanishes. Actually, in 
the first place, in a liquid, the distant elementary 
cells are oriented at any angle relative to one an -
other; therefore, the corresponding vectors r' in the 
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different cells make different angles with the con­
stant vector k ± q- k ', i.e., the exponential factors 
under the integral sign, and the integrals over the 
elementary cells themselves, depend on then umber 
of cells. Second, the vectors n in the liquid no 
longer form a regular lattice, hut are random quan­

tities. 
We show that the summation over the G3 de­

formed elementary cells gives the factor C 3t 2 . In 
the isotropic approxillJation, the integral over the 
elementary cell in Eq. (6) can be taken from under 
the summation sign; the problem then reduces to 
the calculation of the sum 

(8) 
n 

where for brevity we put k ± q- k' = q'. The vec­
tors n in the liquid are randorr. quantities hut are 
not completely independent of one another, since 
the differences of the vectors n, relating to neigh­
boring cells, differ in modulus from the lattice 
constant only by corrections of order E. 

As a preliminary we calculate the analogous sum 

for a one-dimensional liquid model: 
a 

(9) 

where 

qa = 2krr:jG; Xn = Xn-t + a(l + Cjn), (10) 

a = lattice constant; k = 0, 1, 2, ... ; G is the 
number of atoms in the chain; E << 1; y are random 

n 
variables (see Ref. 1 ), The computation of the 
sum is similar to the calculation ofthe length of a 
polymer molecule with restricted turning of the 
links (see, for example, Ref. 4, pp. 409-411). We 
therefore make use of the similar claculations there. 
We determine the square of the modulus of the sum: 

a a 
I ~1 \2 = h eiqxn. ~ e-iqxm 

n=1 m=l 

(11) 

= G + ~ ~ [ei.J(Xn--'·m) + i'i(Xm-·'·n>]. 

n<m 

It follows from (10) that 

ll Ill 

Xn=na+as~r1 ; 
1=1 

Xm = ma +as~ Tz· (12) 
[c"o J 

Substituting (12) in (11), we transform this ex­
pression to the form 

(13) 

[ ~~~ 2 = G + )' ~ {eiqa(n-m) [cos (saq ~ -rz) 
n<m z~n-H 

-isin{saq ~ lz)] 
\ l=n+l ' 

+ eiqa(m-n) [cos ( saq l=~l ll) 
+ i sin(' caq ~ rz) ]} . 

l=n+t 

Transforming to mean values, we note that inas­
much as the y 1 take on positive and negative val­
use with equal probability, the sines vanish and the 
average ·values ofthe cosine sum will he equal to the 
products of the mean cosine components. Since 
the mean square values of all the y1 are the same, 
the product reduces to the order of the quantity 

cos (taqy1). Consequently, 

~~1~ 2 = G 
(14) 

+ ~~ [cos ( saqrz]'n-n [eiqa(m-n) + eiqa(n-m)]. 

n<m 

The summation is carried out without difficulty and 

yields 

I '', 12 = G + 0~11 + 0~;1) (15) 
~1 1 - ~1) 1 -- ~/1) 

- 10 (1 - ~a1)a) 
( 1 -- ~1))2 

~ (1- ~aha) 
--;;- (1 - ~/1))2 ' 

where, for brevity, we have put 

(16) 

Discarding the last two terms in Eq. (15), which 
do not contain the large multiplicative factor G, we 
get 

-~ '>' \2=G 1-~2 
~1 1- ~1)- (~11)) + ~2' (17) 

Expanding Eq. (16) in a series, and keeping in 
n1ind the smallness oft, and that fl = 1, we get 
from Eq. (17), for q I= 0, 1 

\ ~1~2 = Gs2. (18) 
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For q = 0, the approximate equation (17) is not 
suitable, and the more accurate expression (15) 

yields I k 1 j 2 = G 2 , in correspondence with the 
usual theory. 

The three-dimensional case can be reduced to 
one-dimensional if we direct the x axis along the 
vector q 1 and the fundamental region of G3 atoms 
into G2 chains of atoms, parallel to the x axis, 
with G atoms in each. Then we can accomplish 
summation along the chain as in the one-dimen­
sional case; we get the factor G£2 in the expres-

sion for the mean square modulus of the sum. The 
summation over the G 2 chains also yields a factor 
G 2 ; hence, the sum reduces to multiplication by 
G3t<2. 

Consequently, scattering of electrons by phonons 
is possible in a liquid without satisfying the law 
of conservation of momentum inside the electron­
phonon system. This can explain the fact that the 
lattice, as a consequence of the disruption of long 
range order in it, can take on additional momentum 
in the emission or absorption of a phonon by an 
electron. A similar effect takes place in the case 
of impurities in crystals. 

We call this additional scattering of the electrons 
"phonon-liquid," since both thermal vibrations and 
disruption of long range order are essential here in 
equal degree. At first glance, consideration of 
phonon-liquid scattering can he regarded as in­
consequential, inasmuch as we neglect corrections 
of order f for the usual phonon scattering in a 
liquid. However, there were only small corrections 
to the numerical values of the coefficients in such 
a case, whereas phonon-liquid scattering is a new 
physical phenomenon with specific properties and 
some dependence on the energy of the electron, and 
therefore (in certain cases) it can play a role in 
spite of the smallness off, Let us consider the 
mean free pat_h length lpl connected with phonon­
liquid scattering. 

Because of the exponential factor in the integral 
over the elementary cell, this integral, strictly 
speaking, depends on k + q- k ', However, the 
factor grad V has a maximum value inside the atomic 
core, where r' is small; therefore, the effect of the 
exponential factor is insignificant (see Ref. 3, p. 
227 ), and we neglect it. Consideration of the ex­
ponential factor would only have given rise to a 
coefficient close to unity. 

The summation of G3 randomly sign-changing 
quantities gives a factor G 3 in the expression for 
the square of the modulus ofthe sum. Integration 

is carried out over the oscillator coordinates, as in 
the case of a metal. Integrating Eq. (3) with re­
spect to time, we get, after some transformations 
(see He f. 3, pp. 187 -190) : 

jc(k', Nqi-1, t)j 2 (19) 

I c (k', N qj + 1, t)J2 = (2G-6C2~2/9Mh) 
(20) 

X (k-k')eqi(Nqi+ 1)Q(£k'-;-Ek +ttwqi)-

n (x) = 2 1 -cos (xtj'ti) 
(xjJi)2 

Inasmuch as k - k' =1=- ± q, the electrons, in CC'n­
trast to ordinary scattering, interact not only with 
l<•ngitudinal, hut also with transverse, waves. ile­
nuse of the O-character of the function {1 (X), the 
l~,w of energy conservation is satisfied in the elec­
tron-photon system. This means that the disrupted 

kttice, taking on additional momentum, does not 

a:Jsorb additional energy for the photon. 
In order to obtain a change in the electron dis­

tribution function at the expense of scattering, we 
must multiply Eq. (19) by the probability for the 
e:(istence of the initial state, and also by the 
probability of non-occupation of the final state, and 
sum over all initial values of the wave vector k of 
tbe electron, over all values of the wave vector of 
tb e photon q, and over the directions of its polari­
zation j. We emphasize that, in contrast to the 
01dinary case of phonon scattering, the summation 
hc:re over k is taken independently of the summation 
over q. As a result, we obtain: 

(21) 

f(k', t)-f(k', 0)= 2c;~;e:2 ~ [(k-k')eqiJ 2 

k, q, j 

X {Q (Ek'- Ek + hwqi) [f (k) (1- f(k')) 

X (Nqi+ 1)- f (k') (1- f (k)) N qi] 

+ n (£k,- Ek- r,wqj} [f (k) (1 - t (k'))N qj 

- f (k') (1- f (k)) (Nqi+ 1)]}. 
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3. THE MEAN FREE PATH OF THE ELECTRON AS 
D.ETERMINED BY PHONON·LIQUID SCATTEillNG 

We introduce the spherical coordinate system k, 
e ' <ll in the space k, with axis kx and the co-

ordinates q, (} , cp in the space q, with axis along 
k - k ', and we replace the summations over k and 
q by integration, with the help of the formulas 

~ F (k) =no (Gj2rr)3 ~ k 2 dk sine dO d<PF (k), (22) 
k 

~ F (q) =no (G/2rr)3 ~ q2dq sin & d& d7F (q), 

D 0 is the volume of the elementary cell. We shall 
consider that the phonons are in thermal equilibrium, 
while the electrons have small deviations from 

•thermal equilibrium at the expense of the electric 
field, or the temperature gradient, which act along 
the·x direction. In this case, 

N·- 1 
Ql - exp {tuuqjtkT} -1 ' (23) 

f = fo-k.~ ~~ox(£); 

fo = [exp {(£- !1-)/kT} + Ir\ 
X (E) is a small correction whose square we shall 
neglect, f1 is the Fermi potential. We shall con­
sider the energy to be dependent only on the 
nJOdulus of k or k '. 

Integration with respect to cp yields the factor 
2rr, (}enters only in the scalar product (k-k')e . 
Let j = 1 he the longitudinal wave and j = 2,3 q' 
the transverse, where eq 2 lies in the plane k-k', 
q, and eq 3 are perpendicular to it. Then we easily 
obtain 

~ [(k- k') eq1]2 sin .S d& = 4 (k- k')2; (24) 

~[(k -k') eq2]2 sin &d& =} (k-k')2. 

In the integration over q, we take into account the 
a-character of the function n (X) 0 All the factors 
save n can be removed from the integrand, setting 

(25) 

where u 1 and u 2 are the velocities of the longitudinal 
and transverse waves, respectively. The remaining 
integral gives 

00 

~ n(Eh'-Eh-hwqi)dq::::::;2rdf Uj· (26) 
0 

In the substitution of Eqs. (23) and (25) in (21), 
all the terms of zeroth order of smallness vanish, 
leaving only terms with f 1(Ek) and { 1(Ek ,). Fur­
ther, 

(k - k')2 = k'2 + k2 - 2kk' cos&'' (27) 

where (}' is the angle between k and k '.If we denote 
by <ll the angle from the plane k ', x, then 

cos fij' = cos e cos 8' + sin e sin 8' sin <lJ 0 (28) 

The term in sin <ll vanishes upon integration, and 
all the remaining terms are multiplied by 2rr. 

The limits of the integration over k are obtained 
from the condition 

E (k~ax) = Ek' + hw1·, E (ki · ) r.un 

w 1 and w 2 are the limiting frequencies of the 
longitudinal and transverse waves. 

(29) 

Carrying out the integration over e, substituting 

the value of (a f I as) in the kinetic equation for 
pl 

the case in which the electric field Ex acts along 
the X axis, and setting k' COS 8' = k ;, we get the 

Dloch integral equation for the function X (E), 
which, after several transformations (which make 
use of the explicit functions for N and f 0 ), takes 

the form 
kj 

2 max (30) 

~ ~ { ~ Nqik2dk (Ek- £",) 
i=l I k' 

xex {Eh-Ek'}fo(Ek) [.2 2 

p t.T ! 0 (Ek,) 3kX(Ek) 

+ (k2 + k' 2) X (Ek.) J dk 
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Generalization to the case in which there is a 
temperature or concentration gradient in addition to 
the electric field presents no additional difficulties. 

For computation of the integral in Eq. (30), it is 
appropriate to introduce the notation 

(31) 

Ek,- [1. 7" 1iNj 

kT = ., kT = Yi, 

and transform to integration over y. The left-hand 
side of Eq. (30) takes the form 

+ k2 ("IJ + y) + I J dk (1l + y) d 
k2 (7l) dk ("IJ) y. 

e" + 1 r~ k2 ("IJ + y) X ("f) + y) 
e~-y + 1 3 k 2 ("tJ) x ("IJ) 

+ ~7l + y) _J_ 1] dk (1l + y) d 
k 2 t"IJ) I dk ("f)) y, 

where, in accord with Eq. (19), y* = y. for 
I 

7J > y ., y* = TJ for 7J < y .. 
I I 

The expressions in front of the square brackets 
in Eq. (33) have a maximum at y = 0 and decrease 
rapidly thereafter. Therefore, we make no great 
error if we take the values at y = 0 for the slowly 

varying functions k 2 ( TJ + y), X ( TJ + y) and 
dk ( TJ + y ). This certainly is the case for metals 
and for semiconductors at high temperatures, since 
in both cases TJ >> y for the vast majority of the 
electrons and these functions vary within relatively 
narrow limits. 

These assumptions are somewhat less valid for 
semiconductors at low temperatures, but for this 
case, as we whall see below, phonon-liquid scatter­
ing does not play an important role, and a rough 
estimate suffices . 

We note that the assumption X = const also ap­
plies in the theory of electrical conductivity in the 
region of very high temperatures. In our case, the 
structure of the Bloch integral equation is much 
more favorable for the assumption mentioned; 

therefore, it can be extended to any temperature. 

This means that the mean free path of the electron, 

connected with the phonon-liquid scattering, exists 
at any temperature. 

As a result of the assumptions we have made, the 
expressions for/.' and I:' are greatly simplified: 

I I 

Yj 

f. = ! \ __!_!}'__ --:::-er._+.,.--1_ dy. 
1 3 .) eY- 1 er.+ Y + 1 ' 

0 

(34) 

y* 
·· 8 ~ y er, + 1 

1 j = -3 -- y dy. 
eY-1 e,·t-Y + 1 

0 

Substituting Eq. (22) in Eq. (20), solving this 
equation for X ( E k,) and setting U 0 = a 3 • we ob­
tain the free path length of the electron as de­
termined by the phonon-liquid scattering: 

= 27 M7r.3h I k'4 (kT)2C2z2a6 ~ juj3 (1~ + 1/). 
i=l. 2 

I: is a function of y ., /."for ~ > y. is also a func-
1 I I I 

tion of y ., and for f < y. it is a function of f. From 
I I 

Eq. (21), y 1 = e IT, where G is the Debye 

temperature. If we assume that for longitudinal and 
transverse waves there exists just one limiting 
value of the wave vector q0 , then, evidently, y2 

= G u 2 I Tu 1; consequently, I; and I;' arc functions 
of 6 IT. Explicit forms of this function can be 
obtained in the region of high temperatures ( T 
>> 0) and in the region of low temperatures ( T 
« 0). 

I For T » e, y « l, for n,ost electrons, Yj < f' which 
means y* = y~ 

I 

1~ =I~= 88 I 3T, I~ =I;= 8!0u 2 j 3Tu1 • (36) 

Substituting Eq. (36) in Eq. (35), and using the 
relations 

we get, after several transformations, 

Here {3 is a number close to unity: 

(38) 

(39) 
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ForT<< 8 we investigate metals and semi­

conductors separately. For metals, the electrons 
in a narrow band around the Fermi level play the 

important role. Therefore, we set ( = 0. Further, 

n > y ., y* = y ., and since y. >> l, then the upper 
., I I I 

limit of integration in both integrals of (34) can be 

extended to infinity. Then 

(40) 

(see Ref. 5, pp. 134, 350 ); I j and I;' do not de­
pend on j. Therefore, 

l pl = (9Makfl I 8rrWC2s2fi2 (ak')4) (41) 

X (f:J I T)2 (dEk' I dk')2, 

(42) 

For semiconductors, ( >> l, and we can neglect 
unity in comparison with e (. In the integral for I:, 

I 
we can again extend the integral to infinity. Then 

I~= 4rr2 I 9 

(see He£. 5, pp. 134, 244 ). 

(43) 

For most electrons in the conduction band of a 
semiconductor, TJ has the order of unity for T <<0, 
TJ < y, which means that y* = TJ and it is easy to 
see that 

for Y1 < rr 2 I 6 (44) 

the equality holds: in the first case for TJ << l, in 
the second case for TJ >> l. 

Consequently, 

As E k, increases from zero to infinity, the coeffi­
cient u. (Ek ,) changes from l to~. 

It is of interest to compare the mean free paths 
obtained here with the value l which is defined 

p 

by the usual phonon scattering. In accord with 

Ref. 3, .l!:qs. (36.8), (37 .15) and (45.16) for metals: 

for T~8 

/p = (l\.1k' 2d 1kli / rr3 ft 2C2) (8 IT) (dEh' / dk') 2 , (46) 

for T~EI 

(47) 

For semiconductors at arbitrary temperature 

IP = (9 (47rj3)''·Mak8 1 16rrh2C2 (ak')2) (48) 

X (8 I T) (dEk) dk')2. 

Consequently, for metals at T >> El, 

and for T << EJ, 

lpl ~ 5E'OO ( T ):1 -r; ~ (ak'16<: 2 0 · 

For semiconductors, for T >> EJ, 

and for T << 8, 

(49) 

(50) 

(51) 

(52) 

In metals close to the filling limit, ak' is ap­
proximately equal to TT. Therefore, in accord wifh 

Eqs. (39) and (40), forE~ 0.1, and in the region 
of high and very low temperaturesJlpl can be the 
same order of magnitude as l ; then the phonon-

P 
liquid scatttring will play a significant role. In 
semiconductors, ak '< l for most of the electrons, 
and is the smaller, the lower the temperature. 
Therefore, in accord with Eqs. (41) and (42), 

l P 1 >> lP. In the majority of cases, phonon-liquid 
scattering can be neglected in semi conductors, 
and only for high temperatures and comparatively 
high values of < does it give a small correction to 
the ordinary thermal scattering. 

4. CASE OF OPTICAL SCATTERING 

In accord with Frohlich 6 , the perturbation energy 
in the interaction of the electrons with the optical 
vibrations of the lattice has the form 
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(53) 

" ~ ( iqr • -iqr) U =- (4;:ie2 1 2a3q) (2G3)-' 2.LJ aqe - aqe , 
q 

where only the longitudinal optical vibrations 
interact with the electrons, since dipole polariza­
tion arises only for the longitudinal wave. 

Subsequent calculation is carried out similar to 
the case of acoustical vibration; because of lack 
of space, we will not carry it out and will only 
note the essential differences and write down the 
final formulas. 

The peculiar features of the calculation with 
optical vibrations are the following: 

l. In the integral over the electron coordinates 
(6), the factor grad V ( r ') is lacking. 

2. In the integral over the elementary cell, 
which is given in Eq. (6), we take from under the 
integral sign the me an value of the product u kuk ', 
equal to a- 3 , taking into account that in most of 
the elementary cells it is almost constant. This 
actually takes place in the case of metals (see 
He f. 3, p. 79 ); in the case of ionized matter, such 
an assumption can he considered as a limiting 
case. 

We compute the remaining integral over an ele­
mentary cell in the form of cube with edge a, in 
which r' is excluded from the center of the cube. 
We direct the axes I;"' along the edge of the cube 
and for brevity write k ± q- k' = q'; then, 

. ''d rr3 sin(q>/2) e'q r "o = --,---- ~ 
a=l (qaa / 2) 

a 2q' 2 (54) 1--
24 

The latter expression is obtained by a series ex­
pansion in sines and a neglect of powers of aq' 
above the second. In this case, and also in taking 
ukut, from under the integral sign; we have ex­
aggerated the value of the term which is a correc­
tion to the unity term in (54). 

3. In .Eq. (21) there is lacking a summation 
over j and in place of the factor ( 2 C 2 / 9) 

x [(k- k')eq.] 2 there is (e 4/a6w0)(1-~2q' 2 /12), 
and in place of wqj the frequency of the optical 
vibration w 0 , which is independent of q: 

q' 2 = (k- k' ± q) 2 (55) 

= (k- k') 2 + q2 ± 2q I k- k' I cos.&. 

4. In the integration over lJ, the term with 
cos t'l disappears and the remaining terms are 
multiplied by 2. Integration with respect to q 

gives 

(56) 

In semiconductors and for most electrons in the 
conduction band, ak << 1; therefore, we can neglect 
the second term in (46). But in such a caset tak­
ing it into account that q0 = ( 2rr/a)(3/4rr)l/3, 
we get 

1/o 

~ ( 1_ a~~' 2 ) dq = (0,5~;27t) (~)"'. (57) 

0 

i.e., consideration of the factor ei qr in the in­

tegral over the elementary cell leads only to the 
numerical coefficient 0.57. If the work is done 
more accurately, this coefficient will be close to 
l. Integration over <P gives the factor 2rr. In the 
integration OVer e, termS with k X = k COS e dis­

appear, and the terms with k: = k, cos e' are 

multiplied by 2. In integrating over k, we make 
use of the a-character of the function 0. All the 
factors save n k are removed from under the in­
tegral sign. We setEk =Ek' ±frw0 , extend the 
limit of the integration to infinity and take into 
consideration that in the semiconductor, 

where m* is the effective mass of the electron. The 
integration over k gives 

~ Q (Ell.'- Eh ± hw0 ) kdk = (27t~t*) t. (59) 
--cc 

If we set 

I= V2m* (Eh' + hw0 ) [N + fo (Eh' + hw0 ] (60) 

+ V2m* (Eh'- hw0 ) [1 +N- [ 0(Eh' -1tw)]. 

then, as the result of all the calculations, the 
mean free path length of the electron as determined 
by the phonon-liquid scattering on thermal optical 
vibrations is equal to 

l - k'j, 
pl--

eEx (df 0 1 dE) 
(61) 

1t2MJi.2woa dEll.' 

0,57 (3j47t)'lae4m* ]s2 dk' • 

With the help of Eqs. (23), (58), (60) and (6l ), 
the length of the free path can be computed in 
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closed form for arbitrary temperature but the quan­
tity is a rather complicated function of the tempera­
ture T and the electron energy E k '· The expres­
sion for [ can be greatly simplified in the regions 
of high and low temperatures, which are separtaed 
at the Debye temperature 

(62) 

For T >> 0, N"" kT/ft. w ; for most electrons, 
0 

E k, >> 1r w 0 , for semiconductors, f0 << N: 

(63) 

Substituting (63) in (61), we get, after several 
transformations, 

an2 M (h.w 0 \2 E 1 

0,57Ul,t4n)'l•e~ m* \e2;a) I<T (k'a)'" 
(64) 

ForT« e, 

N ~ exp { -- h(•)o I kT} <S: 1. 

The second term in Eq. (60) is absent since the 
energy for most electrons is insufficient to en,it a 
phonon. Consequently, 

I ~ ex,p {- h(J)o I kT} V 2m*!iw0 (65) 

and we get, after some algebra, 

2an2 M 'hwoE k' 1 
1/pl = 0,57 (3;4n)'l•e:" m* (e2 I a)z (k'a)z 

(66) 

Let us compare the expression obtained for the 
mean free path with the expressions for the mean 
free path obtained in the usual phonon scattering. 
In accord with Davydov and Shmushkevich [fief. 7, 
Eqs. (3.97) and (3.98)) we have, for ionic crys­
tals with ionic charge z = l: 

forT» 0, 

(67) 

and for T << C, 

I a M ('hw0)2 v_r Ek. 
P = 2; m* e";a exp { hwoJkT} 1iwu. 

(68) 

Conseqnently, forT>> G, 

(69) 

and for G << €, 

(70) 

Thus the investigation that we have carried out 
shows that, with accuracy up to small corrections, 
the ordinary thermal scattering of the electrons in a 
liquid can be considered according to the same 
formulas as in a solid. Ilowever, in liquids there 
also exists an additional phonon-liquid scattering, 
which can play an important role in liquid metals, 
while in semiconductors it is only a small correc­
tion or is negligibly small. 

In conclusion, I take this opportunity to express 
my gratitude to L. E. Gurevich for his valuable 
discussions. 
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