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The experimental data on the interaction of slow 
K-particles with nuclei seem to indicate that the 
first of the two capture processes 

is more probable than the second 4 by an order of 
magnitude. In connection with these, on the one 
hand, a study of the reaction of type (3) may be 
fruitful; but, on the other hand, it is of interest to 
examine other possibilities for obtaining informa
tion about the spins of the new particles. Some in
formation can be obtained from a comparison of the 
probabilities of exchange collisions of K-particles 
with hydrogen and deuterons 8 • 

Another possibility of obtaining information about 
the spins of hyperons and K-particles is connected 
with the fact that beams of particles produced in 
nuclear interactions are partly polarized. As is 
well known, the scattering cross section of a polar
ized beam depends on the angle e as well as on the 
azimuth Cfl· But if the e dependence is connected 
with which transitions play a role, then the nature 
of the Cfl dependence is determined by the spin of 
the particle. Thus for particles with spin ~ the 
characteristic dependence is proportional to cos Cfl• 
for spin 1, to cos Cfl +A cos 2 Cfl• and for spin 3/2, to 
cosCfl+ a cas 2Cfl+ b cos 3Cfl· For particles with 
arbitrary spin the Cfl dependence is characterized 
by the expression 

2S 

)1 An cos ncp, 
n=l 

where s is the spin of the particle. The origin of 
such a dependence is connected with the fact that 
the orbital angular momenturr. does not have a z

component ( m == 0 ), so that the values of the z
component of the total angular momentum agree 
with the allowed values of the z-components of the 
spin of the particles. 

Knowing, e.g., the mode of decay, it is possible 
to ascertain whether the particles are bosons (in
tegral spin) or fermion!;! (half-integral spin). Con
sequently, knowing, e.g., that the K-particle ap
pears to be a boson, it is necessary to have the pos
sibility to separate experimentally the absence of 
a dependence on Cfl for s == 0 from the existence of 
the dependence of the form cos Cfl +A cos 2 Cfl for 
s == l. 
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JN Moszkowski's review 1 of nuclear multipole 

radiation, esitmates are given for the probabili
ties of radiative transitions in the single-particle 

nuclear model. For ML-radiation v.ith a nucleonic 
transition from the state ( n 1 , l 1, j 1, 11 1 ) to the 

state ( n 2 , l 2 , j 2 , 112 ) with the following changes 

of the nucleonic moments: /).j == L; /)..[ == L + 1 (for 
example, M1-radiation from the d312 - s 112 transi-

tion), the formulas which are given are unsuitable. 
As has been noted in Ref. 2, in proton transitions 
of this type, the proton spin-orbit interaction makes 
an essential contribution, so that the perturbation 

operator contains the additional term - ( e/ c) <P 
x ( v) (a· rxA). In a neutron transition this term 
does not appear because the neutron bears no 
charge. However, even in this case. an ML-tran~i
tion is not absolutely forbidden, as IS assumed m 
Refs. 1 and 2. Its intensity is lower [by the fac-

tor rv ( 4£ 2 /1840 · ( 2L + 3)] than the intensity of 
the corresponding proton transition ( E is the pho
ton energy in mev ), but it is comparable with the 
probability of the electric multipole transition. 
E ( L + 1) for energies of the order of 5 mev w1th 
A == 100, and for energies < 1 mev in the case of 

transition with L > l. 
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References 1 and 2 do not contain estimates of 
the probabilities for ML transitions of the type 
f:..j = L, ;'l,.l = L + 1 when the spin-orbit coupling of 
the nucleon is taken into consideration. The re
sults of such a calculation are given below. (All 
quantities are given in terms of the relativistic 
units fr = m = c = 1.) The transition probability 

e 
is determined by the matrix element of the per-
turbation operator: 

if=- flo (ej2M) (a H)- e<D (r) (o- • rx Af >0, 

where flo is the algebraic value of the magnetic 
moment of the nucleon in nuclear Bohr magnetons; 
<P ( r) is the spin-orbit interaction potential. The 
symbol o is equal to 1 for a proton and 0 for a 

neutron. Af is the potential of a ML-multipole 
photon with the wave vector k and polarization t: 

A~= 471" V21t"fk iL 

~ (eYl~ (!lk, IDk)) y~M (!l,cp) fr (kr) eikt 
M 

Using the relations between spherical harmonics 3 

and expanding the Bessel spherical functions 
f L ( kr) in series for kr << 1 we obtain for the 
perturbation operator of an ML-transition with 
f:..j = L, f:..l = L + 1: 

if= il+le471" y 271"/k r (kR)LR ] 
(2L + 1)!! 

X { flo k 2 L+l <D ( ) L+l } 2111 2L + 3 X - X X a 

V-L-~ o• +1 
X . 2L + 1 LJ (eY LM(Sk, <Dk)) (aY LM (6, cp)), 

M 

where x = r/R, R is the nuclear radius and 0 
<;;_ x::; 1. From perturbation theory the transition 
probability is 

w - 271" 
ML- 2jl +1 

""' I < 'I"+ I .H I 'I" > I 2 . k2 .L.J n,i•l'-• n.j,}J., Pk' Pk = 271"2 • 

where the wave function of the nucleon is taken in 
the form 

'Ynlil'- = Riln (x) Oil' (!l,cp) = Riln (x)] c{~""Yzm<pae<. 
mrx 

The matrix element is separated into radial and 
angular parts, and we obtain for the transition proba
bility 

where 

S = L (471")2 
(2L + 1) (2h + 1) 

% L (2£1 + 1J (ZL + 3) (2i2 + 1) cc;~g£+10): 

X [ ~ (2j + 1) W (j2 hL + 11; 
1 

(12) 

In the practically important cases / 1 = 0 and 
l 2 = 0, the formula for S is considerably simpli
fied: 

for l1 = 0 S = 3j4L (2j2 + 1) W2 (haLl2 ; 1j2); 

for 12 = 0 S = 3/ 4L (2j2 + 1) W2 (j2aLl1 ; 1h). 

For the purpose of evaluating the radial part of 
the transition matrix element we set: 

= (<D (x)) av<R;,I,n, I xL+lj Rj,l,n) ""'· L! 4 (ID)av' 

where <<ll> avis the diagonal element of the spin
orbit coupling potential. According to Ref.. 3, 
<<ll(x)> "'-9.6A 1/ 3 (inourunits),where 

av -

A is the rr,ass number of the nucleus. Using this 
value we obtain for the probability of an ML-transi
tion with f:..j = L, f:..l ~ L + 1: 

W = 1.8e2 ( kR)2L+l R 9 
ML [(2L + 1) ! !]2 (L + 4)2 

X [flo 1 k2 ,1 ] 2 
2 1840 2L + 3 + 9,6A- •a S ·1021 sec -l, 

where k is the photon energy in the units me c 2 

= 0.511 mev, e 2 = 1/137, and R is the nuclear 
radius: R = 0.85 A 1 / 3 274 (R = 1.25 x 10- 13 A 113 

em). 
As can easily be ssen, the spin-orbit term for 

k < 16 ( < 8 mev) is considerably larger than the 
first term. Indeed, fork = 16 we obtain 
1/2 (flo /1840) k 2 I (2 L + 3) ::; 1/5 ( 256/1840) 
= 0.028, which is smaller than 9.6 A- 2 13 even 
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when A = 200; therefore, the first term can be 
neglected in proton transitions. For neutron transi
tions the second term disappears and the transi
tion probability is determined entirely by the first 
term in the square brackets. It is interesting to 
compare the probability of and E (L + 1) 
transitions of neutrons: 

When k "' 10 and A = 100 the probabilities W M 1 

and WE 2 are of the same order of magnitude, and 
the radiation probabilities of the higher multi
poles M2 and M3 are comparable even at low ener
gies with th~ probabilities for E3 and E4 transi
tions. 
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A DISPERSION relation for forward scattering 
has been obtained by Goldberger et al. 1 ' 2 . In 

the present note a relation is obtained between the 
imaginary and real parts of the scattering ampli
tude for all angles. 

To obtain this relation one can use Gold
berger's method 1, in which it is simplest to em
ploy the coordinate system in which the combined 
momentum of the nucleons (incident and scattere4) 
is zero. However, we shall derive our dispersion 
relation here by using some results obtained by 

Nambu 3 • 

According to Nambu 3 , the Feynman matrix ele
ment for the scattering of bosons (with morr.entum 
k and charge index u.) by fermions (with momentum 
p and additional quantum numbers ,\) can be repre
sented independently of the type of interaction in 
the form 

F~[3 (k, IX; p, t.; k', [3; p', 1.') (l) 

= /J"A' (p') ~ {(k)n' (-•"'rot' Pn,n, ((p- p')2, (p + k)2) 
n=O.l 

(p - k') 2)} u" (p) a (p + k- p'- k'), 

where 

p (p 2 , k 2 ) = ~ vn,n, (p2, u) a+ (k 2 + u) du, (2) 

k'2 = k2 =- ,2 't" - 1 [ l 
r• cxro-;r ""·"ro· 

in which the values of u are given by u = m2 and 
u~(m+f1) 2 • 

The type of interaction affects only the depend
ence of v on the arguments. By dividing o (k 2 ) 
. . "'(k2) d -2 + mto t TTu an Pk we obtain the imaginary 
and real parts, respectively, of the scattering 

~mplitude F <></3." It is convenient to continue our 
Investigation in the coordinate system where the 
combined momentum of the nucleons is zero (i.e., 
P '+ p = 0 ). Taking the z axis in the direction of 
the vector p we have 

p (E = V m2 + p 2, 0, 0, p); p' (E, 0, 0- p); 

k (k0 = w 

= V p 2 + k;_ + k~ + [1.2; kx, ky,- p); k' (w, kx, ky, p). 

From (1) and (2) we obtain (hereafter o ( p + k 
- p '- k ') will be omitted] : 

F~ro = D"'f3 + i A"' I>; .A" 13 = a"'f3 + b"f3; (3) 

Dcx[l (k, p, 1.'1.) = u(p')"A 

] { (k)n' (-r"'[3)n' ~ 
n=O,l 

-A' ,, 
acx[3='ltU (pi 

vn,n, ((p -- p')2 , u) du 

\P +k!2 + u 

(4) 

(5) 
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