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fact, the functions f 0 ( y) and ci> ( y) can he ex
pressed in terms of each other, since they are con
nected by the condition 

d (e~, 0) = 1, (; = L), 

which, by Eq. (4) gives 

or 

fo (y) = 1/y- [QJ-l (y)]-1, (7) 

where ci>- 1 ( y) is the function inverse to ci> ( y) . If 
(6) is satisfied, it follows that <1>- 1 ( y) -> y for 
y -> 0 . But the function inverse to <1>- 1 ( y) "" y will 
be ci>(y) ""y; i.e., we get Eq. (2). In an analogous 
way, Eq. (6) follows at once from (2) and (7). 

From Eqs. (4) and (2) it follows at once that 
e; -> 0 for L -> oo. Indeed, let us suppose that e~ 
has a fixed (and arbitrary) value, and L - r;-> oo. 

Then, by Eq. (4), .A0 ( r;)-> 3 rr / ( L - r;), i.e., ac

cording to Eq. (2), 

egd (e~, L- ;) ~- :>r./(L -- ;) 

with increasing accuracy as L- r; is made larger. 

Since e;dc = e~ d, 

e~dc (e~, ;) z 37t/(L-;), L-;-. CD. 

For r;-. 0, when de"" l, this equation gives 

e~ z ::l7tiL--> 0, L-. =, 

which was to be proved. 
We note that if in Eq. (4) we regard e~ as de

pendent on L, (as Taylor indeed assumed), the 
proof does not go through, since as L increases the 
quantity e~(L)f0 [e 20 (L)] inEq. (4) can change 

in such a way that .A 0 will not decrease, and will 
in general not be sn:all for L -> oo, 

The writer expresses his gratitude to B. L. Ioffe 
and A. D. Galanin for discussion of the nJanu
script and valuable remarks. 

* Cf. Ref. 3, Eq. (5.6). Account is taken of there

lation (-k2 /m2 )ci>(e 2 ) = exp(-3rr/.A )if the function c c 
f of Eq. (l) is related to the function cp of Ref. 3 in 

c 2 
the following way: fc = ( 1/ e c ) + In Cf!( e~ ) (the quanti-

ties k2 and e2 of Gell-Mann and Low are here denoted 

by -k2 and e2 ). 
c 

** For example, as Landau has remarked, for the 

function [In ( 1 + ey, r 1 the relation (2) holds, but the 

condition (2') does not: for A-> -0 

*** Cf. Eq. ( B.l1) of Ref. 3; note that 

- k~ 0 ( 2) ') 
~ e0 = exp (- vr./\,), 

if in Eq. (4) fo ( e~) = e-~ +In G ( e~), Therefore, 

F [ ~A:2 0 (e~)] -- <lJ ("Aol. 

if ci> ( y) is determined by)he function F of Ref. 3 by the 
equation <I>( y) = F ( e-37T Y). 
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MEASUREMENT of the velocities of particles 
in a beam (spectrometry) is a typical problem 

of physical experiment. A polarization rr.ethod can 
be used for particles which possess an intrinsic 
magnetic moment. The spectrometer resembles the 
type which is used to determine the magnetic 
moments of individual particles. In the path of 
the beam there is placed a polarizer, a device for 
rotating the plane of polarization, an analyzer and, 
finally, a particle detector. The device for spin 
rotation can be constructed in such a way as to 
change the orientation only for particles which 
possess a given energy. The analyzer removes the 
remaining particles. The detector readings corre
spond to the number of particles of the given energy 
in the beam spectrum. . 

For neutral atoms with spin it i-s techmcally 
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possible to construct the spectron,eter in the fol
lowing manner (for definiteness we shall discuss 
particles with spin Yz ). The particles enter a 
nonuniform Stern-Gerlach magnetic field which 
splits the beam into two components. Then the 
reorienting intrurnent ( which will be described in 
detail below) flips the spins of atoms possessing 
a given velocity. Then the particles traverse a 
Stern-Gerlach field which is similar to the first 
field. This field further separates the two com
ponents of the beam, with the exception of the 
atoms which were reoriented. Instead, the latter 
are focused at a slit behind which the detector 
is placed. When necessary, on the straight line 
connecting the source with the slit the analyzer may 
contain a screen ( filament) which prevents direct 
entry by spinless atoms in the detector. The de
tector can be a vacuum pressure gauge or a thermo
couple. 

A neutroil' spectrometer can contain Bloch ferro
magnetic polarizers, such as are used for the 
measurement of the neutron magnetic moment. The 
sensitivity of the detectors should be determined 
from sources with a known spectrum. A detector 
of very simple geometry which permits an exact 

calculation of the sensitivity can also be used as 
a standard. 

The most in,portant part of the spectrometer is 
the reorienting device. This consists of a series 
of conductors, the current in which excites a 
periodic magnetic field along the particle trajec
tory. The field reverses its sign along the trajec
tory. Alternating current is used. It is evident 
that some particles possess such velocity that 
during their entire transit they will be in afield 
which does not change sign. The magnetic moment 
of such a particle precesses in the field and the 
field strength can be chosen to provide a spin ro
tation of 180° at the exit point, that is, reversal. 
Particles of other velocities enter a field which 
changes its sign. When the sign of the field 
changes, the direction of precession changes. As a 
result, during their passage the spins of such parti
cles cannot be rotated through any appreciable 
angle. It is easily seen, however, that there is 
more than one resonance velocity, namely: 

vres = awf(r: + 2nr:). 

Here a is the half period of the field, w is the 
current frequency, n = 0, 1, 2 ... is the order of 
the maximum. The reversing system can be de
signed in such a way as to completely eliminate 
all maxima above the zeroth order. Moreover, they 
can be cut off by screens placed properly in the 

analyzer. During the measurements the resonance 
velocity changes with variation of w. It is clear 
from elementary considerations that the resolving 
power of the spectrometer is approximately given 
by the total number N of field periods in the re
orienting system and is independent of other prop
erties of the system. 

The author has calculated a few variants of the 
reorienting system. The quantum equation for the 
spin functions was solved. The particles were as
sumed to have a classical trajectory. For a field 
with a single component ( in the region of the 
beam) when a sinusoidal current is used the proba
bility of reversal close to resonance is 

Here v is the particle velocity, J 0 is the zeroth 
order Bessel function, n = Nwa( 1/v- 1/v ), r res 

A is a coefficient which is determined by the 
specific type of system. The maximum probability 
for reversal is 0.7. This is less than unity as a 
result of averaging over the current phases. 

We shall take as an example the following tech
nical realization of a reorienting system. Two 
parallel wires are extended in zigzag fashion along 
the particle trajectory so that the particle moves 
between them. Current fron, the generator is sent 
through these wires. 

A second type of reorienting device uses con
stant fields. The system of conductors which 
produces the periodic field is supplied with direct 
current. In addition, an electromagnet excites a 
strong uniform field parallel to the magnetic 
moment of the particle. The reorienting mechanism 
is the same as in apparatus for the measurement 
of the magnetic moments of individual particles. 
The resonance velocity changes with the uniform 
field strength. 

It is also possible to use combinations which 
unite characteristics of both types of reorientation 

devices. 
With this atomic spectrometer it is possible to 

investigate various collision processes between 
atoms and molecules, chemical kinetics, the be
havior of statistical systems and recoil atoms in 
nuclear physics. (Radicals possessing a mag
netic moment can, of course, also be analyzed by 
the spectrometer.) The atomic spectrometer en
ables us to investigate processes which take 
place at temperatures of hundreds of thousands of 
degrees (and, in particular, to measure such 
ten1peratures) by analyzing the velocities of ~ 
beam of neutral atoms leaving the heated regwn. It 
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is thus possible that the spectrometer can he used 
in work on thermonuclear reactions, since hydro
gen, deuterium and tritium atoms possess magnetic 
moments. With a neutron spectrometer it is possi
ble to measure the cross sections of neutron inter
actions with nuclei and polarization effects, and to 
obtain the spectra of neutron sources. The measur
able energy range goes fronJ thermal ranges to the 
order of 10 mev. For large energies the size of the 
apparatus and the power of the generator are in
creased, hut pulsed operation is possible. 

Translated by I. Emin 
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0 NE of the conditions for the relativistic in~ 
variance of a theory is that the state vectors 

;J> of the field transform according to some repre
sentation of the Lorentz group. Since any vector <D 
can he obtained by operating on the vacuum state 

<I> 0 with creation and annihilation operators, the 

transformation of ct> reduces to the transformations 
of cp and of the creation operators, that is, of the 
fiell amplitudes. It will Le shown that the field 
amplitudes do not transform according to the spinor 
representations of the Lorentz group, and that the 
amplitudes corresponding to electron and positron 
states transform independently of each other ac
cording to the same representations. We nsh.all c~n
sider the inhomogeneous Lorentz group L ,mcludmg 
space reflections hut not tirre reflections. The 
question of time reflections is more complicated 
and requires :special consideration. It is clear that 
the vacuum state <1> 0 is invariant under the group 
£ . In order to derive the transformation properties 
of the field amplitudes we shall write the field 
operator tjJ (x) in the interaction representati~n in 
the followinu relativistically invariant form (m the 

" ' l . d following we make use of Feynman s notatiOn an 
set 1r = c = l) 

(l) 

)( ~ {u (p) a (p) e-ipx + v (p) b+ (p) eipx} df. 

The integration in (l) is taken over the hyper
surface given by p 2 = m2 , p 4 = f > 0; d[' 

= (m/ f) d 3 p is the invariant element of the hyper
surface; u (p) = II u~ (p) II is a matrix of four 
rows and two columns given by the two solutions of 
the Dirac equation for positive energy, normalized 
according to the condition u;cx. u f3 = o af3 ; v (p) is 

the charge conjugate matrix; a (p) = (ai((p)) ) is the 
a2 p 

column operator consisting of electron annihilation 
operators, and b + (p) is the analogous column op
erator of positron creation operators. The opera
tors a, b are normalized by the invariant a-function 
on 1 , that is, they satisfy the anticommutation 
relations 

[a (p), a+ (q)]+ = Ll (p- q), H T. ,lJ.. (.:l (p) = (efm) a (p)). 

Let us first consider the homogeneous Lorentz 
transformation. (Similar, though somewhat simpler, 
considerations hold for translations.) Under a 
transformation L the spinor field t/1 (x) transforms 
according to 

~ (x)-+ ~' (x) = SL~ (L-1x), 
(2) 

where S L is the spinor representation of the Lorentz 
group, which satisfies the condition S L S L =S L L · 

1 2 1 2 
It is easy to see that the transformation (2) is 
equivalent to the following system of transforma
tions in p-space: 

a(p)~ a(L-1p) 
(3) 

with similar systems of transformations for v and 
b + . From the relativistic invariance of the Dirac 
equation, however, it follows that 

SLu (L-1p) = u (p) ZL (p), (4) 

where the second degree matrix Z [. (p) is deter
mined by the relation Z L ( p) = u (p) S L u(L -l p ). 

The following properties of the matrix Z L (p) 
are easily established: 

l) Z L (p) generates a representation of the 
Lorentz group, that is, 

2) The representation (5) is unitary 


