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L ET us consider a metal, in which there is a 
heat flow Q = Q x and a magnetic field H =H x • 

For the calculation of the coefficient of thermal 
conductivity we use the model of Sommerfeld, 1 

according to which the flow depending on the motion 
of electrons under the action of the temperature 
gradient is set equal to zero. Accordingly, 2 

3n \ 3 (1) 
Oy = 2vs J YJfv d<. 

and analogously for I and Q . Here (-e) is the y ·X 

charge on the electron, m is the mass of the elec­
tron, vis the velocity, ,;and n are the components 
of the velocity along the x and y axes, ( is the 
kinetic energy of the electron. The distribution 
function is taken to have the form 

f = fo + ~Xx + TJXy, (2) 

where {0 is the Fermi distribution function, and 
the functions Xx and X Y (found with the aid of 
the kinetic equation, in which the term taking into 
account collisions, was derived by Lorentz 3 ) equal: 

(3) 

Xy = -l (!1q + /2) I v (1 + q2). 

Here l is the length of the mean free path of the 
electron, and the rest ofthe variables are defined 
as follows: 

q = (J)i I v = (eH I me) l I v; 

/1 = atol ax -e£xaf0 ! a<.; 

/2 =a to I ay- eEyafo I a .. ; 

(4) 

Ex and E Y are the components of the electric 

field resulting from the motion of the electrons 
under the action of the temperature gradient. 

Calculation shows that the dependence of l 
on v for the present problem is immaterial, because 
the terms containing the derivative of l with respect 

to v , are small and do not enter into the ex­
pression for the coefficient foc thermal conductivity x. 

Making the usual calculation for the coefficient 

of thermal conductivity X= -Q X I ar ;ax (in the 

present problem I =l = 0, 0 = 0) with accuracy 
X y . y 

to the terms '"'" (k T fr) 3 (7 is the Fermi level), 
we obtain 

where x 0 = rr 2nlk2 T / 3mv is the coefficient of 

thermal conductivity in the absence of a magnetic 
field. 

Approximate calculation shows that formula (5) 
gives a decrease in the thermal conductivity of 
less than 0.01% of x 0 in a field of 10,000 Oersteds. 

It can be shown that consideration of the effect 
is necessary formetals of the type ofBi which have 
a small number of conduction electrons. 

In conclusion I must thank K. B. Tolpygo for a 
number of suggestions and E. I. Rashba forcertain 
advice in the course of carrying out the work. 

1 
2A. Sommerfeld, Z. Physik 48, 51 0928). 

H. Bethe and A.· Sommerfeld Electron Th f Metals. ' eory o 
3 
G. Lorents, Theory of the Electron. 
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I N this note the motion of the photon is treated as 
a random process under the following very general 

assumptions: the medium is isotropic; its proper­
ties may be functions of time and space; the photon 
may be scattered, absorbed by an atom and reemitted, 
or absorbed in a collision of the second kind; the 
polarization of the radiation and the motion of the 
atom excited by a photon are not taken into ac­
count. 

We begin with the function 

f~: (rl, YJ1, v1, t1; r2, YJ2, v2, t2) dV 2 dTJ 2 dv2, 
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It represents the probability that a photon, which 
at time t and position r 1 possesses a frequency 
v 1 and a \elocity v 1 whose direction is speci-

fied by a set of direction cosines denoted by 17 1 , 

will at time t 2 be found in the element of volume 
dV2 surro:.mding the point r 2 , with a frequen~y 
in the interval v 2 to v 2 + dv 2 , and with a 

velocity v 2 whose direction lies in the interval 

71 2 to n 2 + dTJ 2 • 

In introducing different values for the speed of 
the photon, we have in mind free photons ( v=c, 
where c is the speed of light) and photons absorbed 
by atoms ( v = 0 ). In the case of photons ab­
sorbed by atoms, 17 and v' stand for the direction of 
their motion and the frequency before absorption. 
It is necessary to take these parameters into ac­
count inasmuch as in a given case the indicatrix of 
radiation may depend on the previous history of 
the photon. Such a choice of the function f v 2 

vl 

permits the motion of the photon to be regarded as 
a random process of mixed type without after­
effects. Therefore the same function f v2 must 

vl 
satisfy the generalized \1arkoff equation 

1~: (1; 2) = ~ \ 1~: (1; 3) 1~: (3; 2) dV3dYJ 3dv3 , (l) 
v, .) 

v 
where f 2 (l; 2) is an abbreviation for the 

vl 

function introduced above. 

Setting t 3 = t 2 - 1'1t in (l) and letting !'1t ap-

proach zero, we obtain the first integra-differential 
equation of Kolmogoroff-Feller for processes of 
mixed type 

(2) 

= ~ ~ f~: (1;r2,7Ja,va,t2)k~: (r2, t2; YJ 3 , v3 ; 7) 2 ,v2) d7)3dv3 

v, 

- 1~: (1; 2) ~ ~ k~~ (r2, t2; 7) 2, v2; 7)', v') dYJ' dv' 
v' 

- crv, (r2, t2, v2) 1~: (1; 2)- v (2) grad 1~: (1; 2). 

The last term is the scalar product of the photon 
velocity at the point 2 with the gradient of the 
function f v2 at this same point. 

vl 
Similarly, setting t 3 = t 1 + !'1t and letting M 

approach zero, we obtain a second equation 

(3) 

= ~ ~ k~: (r1, t1; 1JI, v1; 7)3, v3) /~: (rl> t1; YJa, v3; 2) dYJ3dv3 
v, 

- !~,' (1; 2)); k~' (r1,t1; 1J1> v1; YJ', v') dYJ'dv'-
- 1 

v' 

- crv, (r, t1, vi) 1~: (1; 2) + v (1) grad 1~: (1; 2). 

The quantity k v2 (r, t; 7]1, Vl; 7] 2 , v2 ) in 

Eqs.(2) and (3) isv the probability of change of 
state of the photon normalized per unit time. It 
takes into account scattering of the photon and its 
re-radiation by an atom; a (r, t, v ) takes into 

VI 

account processes of photon destruction, and its 
form is determined only by the initial velocity of 
the photon. 

v 
Explicit expressions for k 2 and a are 

v l vl 
given below: kg = 0; k~ = Apk (ryl' v 1 ; 1] 2 , v 2 ), 

where A is the probability of spontaneous emission 
and p k ("'II , v 1 ; ry 2 , J.-•2 ) is the indicatrix of 

emission; k ~ = k (r, t, v 1 ) co (ry 1 - TJ 2 ), in Wl.ich 

k (r, t, v 1 ) is the photon absorption coefficient of 

the atoms; k~= li (r, t, v1) cpli(ryl'v1 ; 7] 2 , vz), 
where li ( r, t, v ) is the coefficient and pli 
(ry 1 , v 1 ; ry 2 , v2

1 J the indicatrix of scattering; 

a 0 ( r, t) is the probability of collisions of the 

second kind, calculated for a single excited atom; 
a (r, t, v) is the coefficient of true absorption. 

c 
v2 d If we substitute the values of k an a 

v 1 v 1 

into (2) and (3), then instead of each of these ex­
pressions we obtain a system of four integra-dif­
ferential equations in the functions { 0 , reo, f 0 and 

0 c 

f~ , which can be transformed into a system of 

integral equations. We note that simple trans­
formations permit producing integra-differential or 
integral equations that contain only one of the 
functions f v2 • 

vl 

If the distribution of the sources of radiation 
and of collisions of the first kind i:n the volume 
V under consideration is known, then with the 
aid of the function f v2 it is easy to obtain the 

vl 
concentration of excited atoms and the radiation 
intensity as functions of space and time. Thus, 
by applying the theory of random processes it is 
possible under very general assumptions about the 
interaction of radiation with matter to derive the 
complete system of equations that describe the 
nonstationary process of radiation transfer in an 
isotropic medium whose properties are functions 
of space and time. Naturally the equations of radia­
tion transfer (that are well known in the litera-
ture) the equations for the volume density of ra­
diation and forthe concentration of excited atoms, 
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can all be derived as special cases ofthe rela­
tions given above. It is to be noted that the first 
equation of Kolmogoroff-Feller permits the deri­
vation of the complete system of equations for 
the desired probability densities. Comparison of 
the two equations permits determining the sym­
metry properties of the function f v 2 (I; 2) with 

v1 
respect to an interchange of indices, from which 
follows the general formulation of the principle 
of optical reversibility. 

The probability density f v2 0; 2) considered 
v 

here is closely connected, of course, with the 
transmission and reflection functions of V. A. 
Ambartsumian and with the probability of emer­
gence of a photon employed by V. V. Sobolev. 
The authors hope to take up these problems in 
detail. 

Translated by J. Heberle 
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D ARWIN 1 has shown that it is possible to 
write the Lagrangian function for a system of 

charged particles, correct to the second order terms 
in the ratio. of the velocity of the particle to the 
velocity of light. This is possible be cause the 
radiation of light is a third order effect in v/ r: 
and does not enter in the second order approxima­
tion. 

It is of interest to point out the possibility of 
obtaining the J ,agrangian function for a system of 
identically charged particles to a higher order of 
approximation . It is well known that in a system 
of identical particles (with precisely the 
same ratio of charge to mass) the radiation is pro­
portional to the fifth power of v / c and not to the 
third power. Therefore the Lagrangian fun\Ction for 
such a system can be written to the term v4 / c 4 . 
It is easiest to use the method given in the book of 
Landau and Lifshitz 2for its calculation. 

It is not difficult to show that the third order 
terms in the Lagrangian function go to zero. A 
calculation of the fourth order terms leads to the 
following expression, which must be added to the 
second order Lagrangian function. 

m 1•6 2 1 
L(4) =- ~ _a_a_ +-e-" - {2 ( )2 (l) .t..J 16c4 8c4 .t..J R v a v b 

a b>a ab 

+ v~ (nva) + (nva)2 (nvb)- (nvb) 2 (nva) 

- 3Rab (a vb) +Rab(nvb) (nval }· 

~here n is a unit vector in the Direction R . Of 
course in making calculations the terms th.'if con­
tain the total derivative with respect totime are 
dropped. 

The accelerations can be expressed here 
through the coordinates and velocities of the 
charges, consistent with the equations of motion, 
obtained by completely neglecting the retarded 
potentials, that is, from the Lagrangian function 
of zero approximation. Thus in the simplest case 
of two charges we have 

where R 21 = -R 12 =Rand R/ R = n; after substituting 

in (l) we obtain 

(2) 

+ ;:4 { J~ [2(vlv2) 2 -viv~+(nv1 ) 2 v~+ (nv2)2 vi 
3e2 

- 3(nvl) 2 (nv2) 2] + ---;n [(nv1 ) 3 + (nv2) 2] 

e2 2e4 } - m (vi+ vi)+ m2H_3 • 

The T ,agrangian function of two identical charges 
with accuracy to the fourth order can be used for 
investigating the relativistic r:orrections in the 
scattering of high speed protons, and also for 
generalizing the well-known formula of 3reit forthe 
interaction of electrons (see Refs. 3,4 ). The 
calculation of the formula of Jreit to fourth order was 
carried out by Maksimov; the results however are 
very lengthy, and we will not include them here. 

The authors thank L. A. ~Iaksimov for considera­
. tion of the work. 

1C. Darwin, Phil. Mag. 39, 537 (1920). 
2 
L~ D. Landau and E. M. Lifshitz, Classical Theory 

of Ftelds. 

3G. Breit, Phys. Rev. 34, 553 ( 19.39). 
4 
L. Landau, Z. Phys. Sowjetunion 8, 487 (1932). 
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