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that in the case of extreme relativistic energies 
this difference evidently depends on the behavior 
characteristics of the spin magnetic moment of the 
electron. It should be noted, first of all, that in 
the relativistic case the electron, in a n,anner of 
speaking, "loses" its magnetic moment in accord-
ance with the formula 

fL ::::::::: fJ.omc2 I E, fLo = eh I 2mc. (4.15) 

However, on the other hand, with increasing energy 
the interaction with the high-frequency parts of the 
virtual field of th.e photons plays an increasingly 
significant role in the radiation. 

The matrix elements characterizing the radiation 
at the expense of the magnetic moment and at the 
expense of the charge interaction are proportional 
to the magnitudes "- f1ll "- flXA and "- eA, re­
spectively. Consequently, the ratio of the energy 

of radiation W fl at the expense of the 

magnetic moment to the energy of radiation 
We at the expense of the charge inter-
action is equal to(W /W )"-(flW /ec) 2 in fL e max 

order of magnitude. In the case of ( << 1, the 
maximum frequency is given by w ""w (E/mc'J:..3 

max 0 ) ' 

while for ( » 1 it is given by w ""E/h. Hence, 
max 

we obtain at once 

for c~ 1' 

for C ~ 1. 

Thus the statement of Sokolov corresponds conJ­
pletely with the results of the present work. 

I wish to express my gratitude to Professors 
A. A. Sokolov, N. P. Klepikov and I. M. Ternov for 
many discussions of the questions considered in the 

present work. 
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. A study is made of the statistical model of the nucleus with uniform density distribu­
tion of the nuclf;ons, on the basis of .a tw~-nucleon inte~action potential of the type of the 
Lennard-Jones mtermolecular potential wrth a hard barner. It 1s shown that saturation can 
be obtained with a certain choice of the parameters in the potential. 

} THE explanation of the stability of atomic nu-
• clei is one of the main problems of the theory 

of nuclear structure, directly related to the ex­
planation of saturation, which consists of the fact 
that in medium-weight and heavy nuclei the density 
of nucleons and the binding energy per nucleon are 
roughly constant. The existence of saturation has 

always placed restrictions on the choice of one 
or another kind of theory of the nuclear forces, 
which it is still impossible to determine unique I y. 
At first it seemed possible to achieve saturation 
by means of exchange forces of various kinds. 1 

But the data on the scattering of nucleons (n-p 
and p-p) at moderately high energies(~ 100 mev) 
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evidently show that the exchange forces play a 
considerably srmller part than is needed for the 
explanation of saturation. It is also impossible 
to explain saturation if the nuclear forces are only 
nonexchange forces of attraction, for example in the 
form of a rectangular well or a Yukawa potential. 
In such a case the collapsed state would have to 
he the most stable one. In recent papers 2 - 4 it 
has been shown that a two-nucleon central potential, 
consisting of a spin-exchange force of large magni­
tude and a repulsive Wigner force of relatively 
small magnitude (with radial dependences of the 
form e-k 0r / r ), leads to the observed saturation 
of the nuclear density and binding energy. On the 
other hand, it has recently been suggested5 that 
there is a possibility of explaining saturation by 
taking into account many-particle forces acting 
between three and more nucleons. In this case 
it turned out that the introduction of (non-exchange) 
many-particle repulsive forces (mainly involving 
three particles) obtained from the pseudoscalar 
meson theory leads to a qualitative explanation 
of the observed saturation. It is still of interest 
to examine in more detail the influence of two­
particle repulsive forces on the saturation. 

In the present paper we show the possibility of 

explaining saturation on the basis of a semi­
phenomenological two-nucleon interaction potential 
of the type of the intermolecular potential of 
Lennard-Janes, involving a hard wall, containing 
an ordinary nonexchange repulsive force acting at 
small distances along with the attractive Yukawa 
force. For simplicity , we shall not include spin 
terms; their role in saturation has been elucidated 
previously . 2 - 4 Without trying at present to fix 

the precise form of the two terms of the potential, 
which is obviously not yet essential, we must 
emphasize that the explanation of a fairly con­
siderable number of experimental facts about the 
scattering of nucleons in all probability demands 
that, along with the attractive forces at distanc0s 
r > r c , there also he present a strong repulsion 

at small distances r < r ~· 7 We shall show that c 
a special law of this type, of a form that can be 
generalized without difficulty (for example by 
adding our repulsive term to the "best" known 
potential from pseudoscalar mesodynamics) can 
explain the absence of a collapsed state in nuclei, 
just as is found for liquids and solids. Despite the 
fact that the presence of some repulsive part in 
nuclear forces at the smallest distances can evi­
dently be inferred also on the basis of theoretical 
considerations 6 • 7 (though not completely conclusive 
ones) and also from certain hypothetical models of 
the structure of nucleons, one still must not forget 

the preliminary nature of both the empirical and 
the theoretical arguments in favor of such forces: 
precise choice of the shape of the potential remains 
out of the question. 

Accordingly we assume that repulsive forces act 
between two nucleons at distances r > r c along 
with fuses of attraction, and at distances r < r c 
there exists only a stronger repulsion ("hard core"): 

(l) 

r> rc. 

B and C are parameters to be determined later; 
r = r 12 =I r 1 -r 2 I is the distance between nu-

cleons l and 2. The choice of the nucleon potential 
in the form (l) means that the nucleons behave 
like hard spheres of diameter r c interacting through 
the nuclear potential. 

, In the case of an interaction potential with a 
repulsive core r c the wave function W of the ground 

state of a nucleus containing A partie! es can be 
written as a product of a Slater determinant and a 
symmetric function 0 (r 1 , r 2 , ••• , r A) of the space 

coordinates of the A nucleons: 5 

where t/J i ( q i ) is the wave function of the ith 
nucleon 

(2) 

~i (qi) = ~i (ri) ai(s;) (3) 

= !r'1' exp {ik;ri} ai (si), 

ai (s i ) is the spin function of the ith particle, 

and n = ( 4rr/3 )R 3 is the volume of the nucleus. 
The introduction of the spatial correlation be­

tween the A particles by means of the factor 8 
assures the fulfillment of the boundary conditions 
requiring that the wave function (2) vanish when 
any two nucleons approach each other to a dis­
tance r :::; r c • For simplicity we take the function 
8 in a form that takes into account only the corre­
lation hetwee n pairs of nucleons: 

A 

€J (rl, f2, · · · · fA) = L} g (rij) (4) 
i<j=l 

(where rij = I ri-rj I ), omitting for the present the 



TWO-NUCLEON POTENTIAL 
419 

obvious generalizations to take into account 
various configurations inside the nucleus (deuteron, 
CJ, -particle, etc.) which could be stimulated by 
many-particle forces. For simplicity we assume 
g (rij) to be a simple step function 

(5) 

By means of Eqs. (l) to (4) we obtain from the 
equation defining the mean value of the potential 
energy operator 

the following expression for the total average 
potential energy of a nuclP-us composed of A 
nucleons 

where 

(6) 

(7) 

(8) 

For the ordinary and matrix densities of the nucleons 
p (r) and p (r 1 ,r2 ), we have byEq. (3) 

A 

P (r1, r2) = ~ ~: (r;) ~i (r2) (10) 

i=1 

= 3 ( ) sin Kr- Kr cos Kr 
p r (Kr)a , 

(11) 

where K is the maximum magnitude of the wave 
number k of a nucleon in the Fermi distribution. 
The density p (r) must satisfy the condition 

~ p do:= A. (12) 

Using Eqs. (5) and (10) and the relation 

~ (dr1) (dr2) F (r12) g2 (r12) (13) 

= Q ~ (dr) F (r), 
r>rc 

we obtain from Eq. (9), after integration, the ex­
change potential energy of the nucleus as a 

function of the density of the nucleon distribution 
in the form 

(14) 

+ ~o QF1 (bo, "o• p)- ~3 Q [ Fo (bo, "o• p) 

- _1_ •;, (Z- z ) + (-1- + _1_ 'I•) z ] . 
12xg p 2 8xg p 24x~ p 1 

Here 

l 
[ 

1 Cfla (bo) '' F (b x p) =e-'o ---- o 11 
o o• o• b5 2 ' o "o 

(IS) 

_ (J_ _ Cfl2 (bo) 0 •1, 

bg xg ' 

1 . b + -- o'l•) cos ....Q.. o'/, 
24b0x~' "o ' 

(
, 1 ,1 1b0 +1) · bo '/] - --b4 p 3 + 24 -b2 3 p Sln X p I ; 

"o o o"o 0 

F1(bo,"o•P) = 81 e-b,[rp(bo)+-21 (_!_-I)-1-p'/, 
b0 b0 x2 

0 

+ (- rp (b0 ) + - 1-p'/•) cos ~p'l• 
3b0x~ x 0 

-l- (-b !D(b)- _!__) p'/• sin !?.!!.._r''•] 
' o • o. 6 "o Xo 

+ (_!__ + -1-o'l·) (Z- Z)- - 1- pZ · 
48 16xg' 2 24x~ 1 ' 

Qo = 576 "'Ba3xg; Q1 = 576 "'Ca3x~; 

b0 = rc/a; X 0 = b0 jrx.. 
00 

1 1 1 1 
rp ( bo) = b~ - 3b6 + 6b~ - 6bo ; 

r -!Xu 
Z= \ e-dU' 

.l u ' 
x, 
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(16) 

CX> 

Z r . du 
1 = .) e-rxu sm u u ; 

x, 

1 ( 5 1 1) 'Ps(bo) =- --+--- · 12 bs b2 b0 ' 
0 0 

00 

z2 = I e-rxu cos u du • 
.) u ' 
.~. 

After integration we obtain from Eq. (8) the 
expression for the ordinary potential energy, 

(17) 

The expressions (14) and (17) give the potential 
energy of a nucleus of nucleons distributed with 
constant density pin the volume n. For p=p 0 

= const for r :::; R and p = 0 for r > R, we have 
from (12) 

(18) 

From this we get the potential energy of the nucleus 
as a function of its radius R and the parameters of 
the interaction potential 

V =yo+ Va = ~Be-b•a3 A2 
2 R3 (19) 

3 A2 
-2 e-b, (I + bo) Ca3 RS 

8 
- 15'1t'2 B<f\ (b0 , a, R) 

16 + 15'/t'2 (B + 5C) <1>2 (b0 , a, R); 

(20) 

with p = 3A /477R 3 • 

In the case of nucleons regarded as impenetrable 
spheres of radius r c , the kinetic energy of a gas 
consisting of A nucleons contains, in addition to 
the Fermi term, a supplementary term "" r c • 5 

( 2,16 rcA'!•) 
T = TF I+ R 

(21) 

-(~)''•_l__2.:_ ''•[ 2,16rcA'I•] 
- 'It' 160 MR2 A I + R · 

The total energy is 

E = V + T = V0 + Va + T. (22) 

From the requirement that the energy E be a 
minimum it follows that the value of the parameter 
R corresponding to the equilibrium state oft he 
nucleus must be proportional to A l/3, To deter­
mine the values of the potential parameters that 
give the equilibrium state we make use of an 
empirical value of the radius R8 of the nucleus. 
Forthis purpose we set 

(23) 

The dimensionless quantity x determines the varia­
tion of the radius of the nucleus around its equili­
briumvalueR8=r0Al/3. For x=1wehave 

the stable radius R =R s = r 0A l/ 3 , which corre­
sponds to a state of the nucleus with normal 
density. For the empirical constant r we can 
take from the experimental data one of the two 
values (cf. Refs. 5, 8, 9, 10) 

(24) 

fo = L2xl0-13 em. (25) 

Using Eq. (23), we get from Eqs. (19), (21) and 
(22) the expression for the total energy of the 
nucleus 

(26) 

Here 
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b = rc 
r , 

0 

'¥1 (b0 , ~x) = 1\ (b0 , a, R), 

W2 (bo. ~x) = W2 (b0 , a, R) 

with R=r All3x. 
0 

From the stability conditions 

(a£ I ox)x=l = 0, (iJ2E j(Jx2)x=l > 0 (27) 

and the empirical value of the binding energy, 
found without taking into account the Coulomb 
and surface energies, 

(E (x))x=l = - oc0A, oc0 = 14 mev (28) 

we find the parameters B and C as functions of 
the constants b 0 , (3 and r 0 in the form 

B= p (L ~) {3oco + a2 + 10n0 (2a2 + 3b2) (29) 

3'¥2 (b0 , ~) + '¥~ (bo, ~)} 
X , 

n2+10no'¥2 (b0, ~) 

= X1 (bo, ~. r0 ); 

C = 2a2 + 3b2+ [n1 + n0'¥; (b0, ~)- 2n0'¥; (b0 , ~)] B 

n2 + 10n0'¥; (/10 , ~) 

= X2 (bo, ~. r 0 ); 

P (bo, ~) = [3Wl (bo, ~) + '¥~ (bo. ~)1 no 

- [3'¥2 (bo. ~) + '¥~ (bo. ~)1 2n0 

10 3'F2 (b0 , ~) + '¥~ (b0 , ~) 
~ no----------~~~-

n2 + 10 n0'f"; (b0 , ~) 

X [nl + no "IJ!"~ ( b0 , ~)- 2n0 '¥; ( b0 , ~)], 

no= 8j15 ;.2 ; n1 = 9e-b, 1 2~3; 

n 2 = 9e-b, (1 + b0 ) j 2~3, 

lpl (bo, (3), w; (bo• (3 ), etc. are the values ofthe 

functions IV 1 (b 0 , (3x) IV2 (b 0 , {3 x) and their 

derivatives at x = l. 

Substituting Eqs. (29) into the inequality of (27), 
we have 

6a2+ 12b2 +4(n1xi(b0 , ~. r0 ) 

-n2X2(bo, ~. ro)) -n0'Y; (bo, ~) 

+ 2no (Xl (bo, ~. r0 ) 

(30) 

+ 5x2 (bo, ~. ro)) 'Y; (bo. ~) > 0. 

Moreover, the expressions for IV 1 ( b 0 , (3 ), 
IV 2 (b 0 , {3 ), and their derivatives involve the 

values of the integrals (16) and their derivatives 
for x = 1, the function 

and so on. 

00 

\' -wd 
Z = - Ei (- bo) = j e w w 

D, 

2. For given values of the constants r0 and 
a consistent with the experimental data the inequal­
ity (30) makes it possible to set a lower limit to 
the values of the pararre ter b 0 = r c I a for which 
the nndeus can be in equilibrium. We assume 
that the effective radius of action of the two­
nucleon force (1) is equal to the Compton wave­
length of the 17-meson: 

a= hj2Tr:m7tc = 1.4><10-13 em. (31) 

For the values (24) and (31) of the quantities 
r 0 , a , the inequality (30), which corresponds to 
the possibility of nuclear equilibrium, can be 
satisfied if b0 = r c I a > 0.357, orr c > 0.357 a 

= ~.5 x I0-13 em. Thus the existence of an equili­
brmm state of the system of nucleons imposes a 
lower limit on the value ofthe radius r of the 
repulsive core of the assumed interacti~n potential 
(l). With the values b 0 = 0.38 and b0 =0.43, 
corresponding to the values of r used also in 

. c 
Refs. 5,6 and 7, we finally obtain from Eqs. 
(29), (31), and (24) the following systems of 
values for the parameters of our chosen two­
nucleon potential (1): 

B = 395.56 mev; C = 278.64 mev;. (32) 

ro = 1.4Xl0-13 b r fa- 0 38· em; o = c - · , 

and 
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B = 935.167 mev; C = 610.029 mev; (33) 

a= 1,4X10-13 em; 

r0 = 1.4X10-13 em; b0 =rei a= 0.43; 

rc = 0.6XI0-13 em. 

The ordinary repulsive potential energy V0 I A 
= ( a 0 -a 1 ) lx 3 , the exchange attractive potential 

energy va I A = -a 3 qt 1 + a 4 'I' 2 , and the total 

energy per nucleon, EIA = V 0 I A +val A + TIA 
are shown as functions of the nuclear radius 
x = Rlr 0 A 113 in Figs. 1 and 2, for the values of 

mev 

10{1 
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20 
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FIG. L Dependence on nuclear radius R of 1) the ordi­
nary repulsive potential energy VOl A, 2) the exchange 
attractive potential energy Val A, 3) the total energy per 
nucleon El A, and 4) the sum ( vo I A)+ ( Val A), for the 
parameter values (32). 

the parameters given in Eqs. (32) and (33). From 
these diagrams it is seen that the total potential 
energy (VO I A ) + (Va I A ) of the nucleons in the 
case of forces given by Eq. (l) has a minimum 
value 

WI A = vo I A + va I A :::::::; - I 05 mev 

for the case corresponding to Eq. (32), at a 
nuclear radius R = R 0 "' 0.5 r 0 A 113 = 0.7xlo-13A113 , 

and a minimum value WI A "'-51 mev for the case 

corresponding to Eq. (33), at a nuclear radius 
R = R0 "' 0.8 r 0 A 1 ' 3 = 1.12 xlo- 13A 113 . Finally, 
for values of the constants r 0 and a from Eqs. 
(25) and (31) and b0 = 0.38, we have from (29) 

B = 321,580 mev, C =228,970 mev, 
(34) a = 1.4)(.10-13 em, 

r0 = 1.2><10-13 em, b0 = rc I a =0.38, 

rc = 0.532X10-13 em. 
For the parameter values (34) the total potential 
energy WI A = V0 I A + va I A has a minimum value 
of"' -128.2 mev at nuclear radius R = R0 =0.5r 0A 113 

= 0.6 x l0-13 em. Because of the presence of 
the short-range repulsive force ("'Be-xI x 2 ) in 

mev 

roo 

Ill 

60 

1/0 

20 

0 
(/Q 

-20 

-110 

-51 

-6/} 

-IJ{J 

-t. 

-1'10 

FIG. 2. Dependence on the nuclear radius R of I) 
V 01A, 2) VaiA, 3) EIA, and 4) (V 0IA) +(VaiA) for the 
parameter values (33). 

the expression for the two-nucleon potential energy, 
F:q. (1), the potential energy W of the nucleus is 
positive (repulsion) for small radii, and thus the 
collapsed state of the nucleus is not stable. Owing 
to the presence of kinetic energy the total energy 
E I A takes a minimum value equal to the empirical 
value"' -14 mev at a nuclear radius R=R 8 =r0 A 113 

which corresponds to a state of the nucleus with 
normal density. In all the cases we are consider­
ing the behavior of E I A as a function of the nu­
clear radius shows that the state with normal 
density (x = 1) is stable with respect to both 
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increase and decrease of the radius of the nucleus 
and that the binding energy is proportional to the 
mass number A, and not to A 2 • In the case 
B = 0 the two-nucleon potential (I) goes over 
into the ordinary attractive potential of Yukawa 
supplemented by a repulsion of the Jastrow type 
at small distances: 

( 

(X) 

= -rfa 

- c~r fa) 

(35) for r<rc, 

for r >rc. 

According to Eq. (26) the binding energyof the 
nucleus for the interaction law (35) is 

E = T + V0 + Va (36) 

Here 

It can easily be shown that for the energy expressim 
(36) the requirements (27) and (28) are not com­
patible, i.e., equilibrium of the nucleus at the nor­
mal nuclea~ density cannot be secured. Thus 
when the statistical model is used the two-nucleon 
attractive Yukawa potential with a repulsive core 

r c at small distances in the strict sense of the 
Jastrow model does not permit the establishment 
of nuclear stability. On the other hand we have 
shown that our proposed two-nucleon potential of 
the Lennard-lones intermolecular type, which in 
our opinion represents in a semiphenomenological 
way the results of mesodynamics with suitable 
parameters, actually leads to saturation of the 
binding energy at a normal density of nucleons 
corresponding to the equilibrium nuclear radius. 
Fort he two systems of parameter values given in 
Eqs. (~2) and (33) we present a graphical repre­
senta~IOn of the attractive and repulsive potential 
e.nergies, and also of the total interaction poten­
tial e.nergy between two nucleons, as functions of 
the distance between the two nucleons (Fig. 3 ). 

It is seen from the diagram that the total inter­
action force between two nucleons at large dis­
tances ( r ?:Jm ) is attractive, and at small dis­
tances (r < r m) it is a repulsive force. The dis-

tance r = r m between the nucleons corresponds to 

the deepest point in the potential well um. 
It must be remarked that the introduction of a 

6 

r 
a 

-r /a 
fiG. 3. Graph of the dependences of -C _e- , 

e r/a d th I. . . 1(r/a) B (r:J:"\'2 , an e tota mteract10n potentia energy 
ria) 

U 12 (r) between two nuclei on the distance r between 

them; dashed curves are for the parameter values (32), 
solid curves for the values (33). 

correlation function of exponential form, as is 
used, for example, in the theory of liquids, must 
lead to a further weakening of the connection be­
tween the nucleons, in general agreement with the 
requirements of the shell model. 

In conclusion we express our gratitude to 
L. I. Morozovskaia for carrying out our numerous 

calculations. 

Nate added in proof. Brueckner and others 11 have 
come to the conclusion that the two-nucleon potential 
of pseudoscalar mesodynamics without the "pair term" 
gives the required saturation of the energy at the radius 
R = 1.15 x I0- 13 A l/~ if in addition to a repulsive 

s 
core (r ), taken different for the singlet and triplet 
states, cone includes repulsion in the odd ?-state. 
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The behavior of an electron localized near a defect in a nonmetallic homopolar crystal is 
examined, taking into account the "condenson" interaction of the electron with the crystal. 
We have calculated the energy levels of the system and the energy of thermal dissociation of 
the electron, considering the motion of the electron quantum mechanically, and the motion of 
the atoms in the lattice either classically or quantum mechanically, It is shown that the 
condenson interaction leads to a difference between the energies of thermal and of photo­
dissociation of an electron, V.e have determined the shape of the absorption band due to a 
localized electron (the position of the maximum, the halfwidth and its temperature depend­
ence), As an illustration we give numerical calculations in the case of a Coulomb potential 
of the defect (for instance, an impurity atom with a valence electron). 

l. INTRODUCTION 

J UST as the presence of defects accompanied by 
localized electron states leads to the occurr­

ence of a number of peculiarities in the optical, 
magnetic, photoelectric and other properties in 
ionic crystals, the presence of defects in homopolar 
crystals can also essentially change their proper­
ties. 

It is well known that any attempt at a quanti­
tative consideration of the energy level scheme of 
the electrons of an impurity atom leads to the cal­
culation of the motion of a valence electron in the 
field of the ionized impurity in a medium charac­
terized by a dielectric constant c We must at once 
remark that such a calculation which does not con­
sider the interaction of the electron with the vibra­
tions of the lattice is unable to consider quanti­
tatively the width of the absorption hand of imp-

purity atoms, its temperature dependence, the dif­
ference between the energies of thermal and photo­
dissociation, the difference between the energies 
of therrrnl and photo dissociation of impurity 
atoms, and so on. 

In one of the papers 1 by the author and Pekar 
we investigated the question of the states of con­
duction electrons in a perfect homopolar cry.stal. It 
turned out that in a homopolar crystal also the 
interaction of the "extra" electron with the di­
electric can partially be of an internal character. If 
as a result of an elastic deformation there occurs 
a region of increased density and thus a higher di­

electric constant in some parts of the crystal, the 
electron must, according to macroscopic electro­
static theory, drift to those regions. Therefore, a 
region of higher density presents a potential trap 
to a conduction electron, and because of the inertia 
of the displacement of the atoms, it will not follow 


