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It is shown that in the case of energies which are not too great the magnitudes of the spin 
corrections are of the second order of smallness with respect to the magnitudes of the quantum 
corrections, while in the case of extreme relativistic en.ergies the spin essentially changes 
the character of the differential spectrum and the magnitude of the total energy of radiation. 

I. INTRODUCTION 

T HE opinion exists that the spin dues not play 
an essential role in the radiation of a radiating 

electron. This opinion is based on the considera
tion that the spin contribution to the wave function 
of an electron in a magnetic field decreases with 
increase in the energy of the electron. However, 
one cannot conclude from this that the spin is non
essential, since in the calculation of the matrix 
elements of radiative transitions not only the 
wave functions, which are distinguished from each 
other only by sn;all spin contributions , are differ
ent, Lut the various operators whose matrix ele
ments are being calculated are also different. Hence 
the question of the role of spin cannot he decided 
on the basis of general considerations l- 3 . An 

actual calculation is necessary. 
A remark is necessary concerning the statement 

of the problem. Simply raising the question of 
isolating the "role of spin" within the framework 
of relativistic theory appears artificial in itself. 
A statement of the question which has an exact 
sense is the following: to compare under the sqme 
external conditions the radiation from an electron 
and from a boson with zero spin and with mass and 
charge equal to the mass and charge of an electron. 

The present work is devoted to the clarification 
of the question of the role of spin in the radiation 
of an electron moving in a constant magnetic field. 
The calculation is carried out without taking ac

count of damping. 

2. QUANTUM MECHANICAL FORMULAS FOR THE 

INTENSITY OF RADIATION, WITH AND WITHOUT 

TAKING ACCOUNT OF SPIN 

In order to obtain by a single method formulas 
characterizing the radiation with and without tak
ing account of spin, it is convenient to carry out 
the calculation in the scheme of Lorentz forces 
rather than in the Hamiltonian scheme. 

From the covariant definition of the four-dimen-

sional energy-momentum vector p 11 ( p, iW /c) 

p.,. [a]= _J_\ T da 
C J !J.V V (2.1) 

" 
and the relationship 

which follows from it, one obtains for 6.p W the 

change in the energy-n;omentum during a transition 
fron1 the hypersurface a- 1 to the hypersurface a- 2 , 

the following expression: 

"' 
!J.p.,. = c-2 ~ dx F .,.viv. (2.3) 

"• 
where F11v is the electromagnetic field tensor, jv is 

the four-dimensional current, and the fact that 

(2.3a) 

has been taken into account. 
The operators in (2.3) are taken in the Heisen

berg representation. Hemoving the hypersurfaces 
o- 1 ( t 1 ) and a- 2 ( t 2 ) in (2.3) to infinity ( t 2 --> oo, 

t 1 -->- oo, t 2 - t 1 = T--> oo ), averaging the change 

in momentun. over the time interval, and changing 
from hound operators to free field operators, we 
obtain from (2.3) 

(2.4) 

= c8 T 

co t 

~ dx ~ (h/r ~ dxl 
-co n=o -co 

t, tn-I 

~ dx2 •• • ~ dxn, 
-oo -oo 

F~0~ (x) j~o> (x)],] ... ]. 

In this formula it is to he kept in mind that 
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ro T/2 + r dt ... = lim + r dt ... ' 
) T -+OJ ~ 

-(X') -T/2 

(2.4a) 

and that the square brackets denote commutators. 
Averaging (2.4) over the state of a single

electron in the absence of photons, and limiting 
ourselves to the first nondisappearing term, we 
obtain 

(2.5) 

-OJ 

t 

X ~ dx' (1 ,0 I [h. (x') A" (x'), F p.v (x) jv (x)] I 1 ,0). 

For simplicity the indices ( 0) used on the free 
operators have been omitted. 

An average over the photonic vacuum gives (in 
Gaussian units) 

([h, (x') A1. (x'), F p.v (x) jv (x)])o (2.6) 

= 2Trch {h (x') h (x) a~l'- v<+) (x'- x) 

-· h (x) h. (x') a~l'- v<+) (x- x')}' 

where D(+) signifies the positive-frequency D 
function. 

The integral in (2.5) in the surface of changing 
( t, t ') is taken over the half-surface with boundary 
t = t '. For definiteness let us take the first com
ponent of (2.6). If we make the exchange x<~ x' in 
the integral, then the region of integration with 
respect to ( t, t ') v.ill be the other half-surface with 
the same boundary t = t '. This exchange also 
makes the first expression under the integral sign 
coincide with the second expression, with the ex
ception that a derivative with respect to x~ occurs 
instead of a derivative with respect to x11 • How

ever, 

(a 1 axp.) v<+) (x- x') (2.7) 

Hence, the integrands coincide completely and a 
change in sign occurs. Consequently, 

(2.8) 
-OJ 

(X') 

X ~ dx' < 1 I h. (x) h (x') I 1 >a: v<+> (x- x'). 
-OJ 1'-

The radiation IV is equal (with reversed sign) 
to the magnitude of the fourth component of the 
change in momentum 6.p11 multiplied by c/i. Hence, 

W = c2
1T 4!2 ~ d3x ( 1 I ([x0 , j (- x)], (2.9) 

[x0 , j(x)]) I 1), 

where the brackets [ ] indicate vector derivation 
and x.0 = x/ \ x \. The changing of the four-dimen
sional current 

(X') 

j (x) = ~ dxe-iuj (x) (2.10) 
-oo 

into its Fourier components is carried out in Eq. 
(2.9), and the fourth component of the current is 
excluded with the aid of the law of conservation of 
charge 

(2.11) 

The current operators have the following form: 
a) For the Dirac equation 

j (x) = eco/+ao/ = ieco/y'Y, (2.12a) 

h) For the scalar equation 

j (x) = 2~n {<I>* (p<I>) (2.12b) 

- (p<I>•) <I>- 2 +<I>* A <I>}, 

where A is the vector potential of the external 
field ( c is a number). 

The wave functions of an electron in a constant 
magnetic field may be found by iteration. They 
may be given in the following form (the compon
ents of the vector potential being Ax =-~Hy, AY 

= ~Hx, A = 0): z 
a) For the Dirac equation 

o/-o/ - n,l,kz·•·s (2.13) 

-'/, -ic•Knt+kzz 
= Lz e o/n, I, kz • •• s (x, y); 

'Yn, l, kz. e. s (x, Y) (2.13a) 

sf (s, s) ei <n-1--l) cp I n-1, r (rp2), 

if (s, -s) ei (n-lJ cp In, l (jp2), 

sf(- e, s) ei (n-1-l) cp In-It l (jp2), 

is sf ( -s, -s) ei (n-l) cp In, 1 (jp2), 
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where (p, q:;, z) are the cylindrical coordinates of 
the point ( x, y, z ); 

I ('") __ 1_ -/;'2 ~(n-n')/2Q (n-n1 ) ('") 
n n' <; - -- e <, n1 <; ' ' V n!n 1 ! 

Q<m> ('") = r (n + m + 1) F (-n m + I ~) 
n <; r (rn + 1) 1 1 ' ' ' 

1 k ''• ( k ) liz f(s,s)= 2 (I+s-0 ). l+sy z , 
}(n K~- k~ 

eH V 2 k2 k me I = 2ch ' Kn = ko + 4rn + z, o = h' 

n is the principal quantum number, l is the radial 
quantum number, t:"" 1 denotes the electronic state, 
f ""-1, the positron state, s is the spin variable, 
and L is the normalized length in the direction 

z 
of the z axis; 

b) for the scalar equation 

<Pn, l, kz = (ko I!\~) Lz/1" (2.14) 

xexp { -- icK~1lt + ikzz} Cfn, 1 (x, y); 

Cfn, l (x, Y) = Y II"' ei (n-l) '~'In. 1 (jp2), (2.14a) 

whereK(~) ""Vkl]+4y(n+Yz)+k';. and the sig

nificance of the other quantities is the same as in 
case a). The factor (k 0 /K~ 1 ))Y, occurs because 

of normalization to the current of a single charge. 
Introducing the notation 

- ~ + IX= '¥ ' n', 1', kz, 1. s' 
(2.l5a) 

-i><xX-i><yY 
X a.e 'Yn. 1. 0.1. s dx dy, 

- \ * -ixxx-ix. y 
P = J o/n'. u e y Pcpn, z dx dy, 

(2.15b) 

where the ex. are the Dirac matrices and P ""p 
- ( e/ c) A, we obtain from Eq. (2.9) [on taking ac
count of Eqs. (2.12a) and (2.12b)], the following 
formulas characterizing the radiation with and 
without taking account of spin 

ce2 1 
W = ~2 (2.16a) 

X ~ ~ ~ d3x ([x0 , ;:+] [x0 , ;:]) ~ (K- K'- x), 
n'. l', s, s', 

K = Kn, K' = Kn·· 

(2.l6b) 

where in formula (2.16a) the initial state has been 
averaged over the spin states and in formula (2.16b) 
the fact that [ x. 0 , x.] "" 0 has been used. 

On carrying out the calculation intended in 
formula (2.16) and using the well-known recurrence 
relations between the Laguerre polynomials, we 
can after a series of transformations, obtain ex
pre~sions for the intensity of radiation in the 
following form: 

n 
a) lf/="'\;1 W · kJ m, 

m=o 

(2.17a) 

Cfm m = ~ - A + 1f A 2 - m + ~2 cos2 -& ; 

~2 sln2 & 12 12 ) + ~ (/n,n-m + 1n-l, n-1-m 

~2 sin2 & 1 1 + ~ (In, n-m In, n-m- f n-1. n-1-ml n-1, n-1-m), 

where the argument of the function I is equal to 

e sin 2 lJ ' and the primes indicate derivatives with 
respect to that argument; 

fl 

b) w<1> = ~ w~>; 
m=o 

(2.17b) 

where 

=~-A(l)+ lfA<Jl'-m+~2cos2-&. 
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A comparison of formulas (2.17a) and (2.17b) 
allows us to draw conclusions concerning the 
"role of spin" without any approximation whatso
ever. The difference in the magnitudes of A 0 l 

and A leads to a difference in magnitudes of order 
l/n in these forn,ulas and is corr:pletely non
essential, since to our specified accuracy A (l) can 
be replaced by A and cp (1 ) by cp in formula (2.17h). 
Moreover, on taking into account the equalities 

n+n1 -X 
I n-l, n~-l(x) = 2 V nn' In, n1 (x) 

X I 

- ,r--; In, n' (x), 
r nn 1 

(2.18) 

' n + n1 -x 1 

I n-1, n1-dx) = V In, n' (x) 
2 nn 1 

+ L [ 2 V nn1
- (n :;~~x)2 ] In, nl (x), 

we may show that in the first and second paren
theses in the expression for <Pm in Eq. (2.17a) 

ln,n' and/n-l,n'-l can he equated with an accur-

acy of magnitude"' v' l- (32, so that these terms 
coincide with the corresponding tern,s for <P(!) in 
Eq. (2.l7b). Thus the "role of spin" is detemined 
by the term in the third parenthesis in the expres
sion for <Pm (e-) in Eq. (2.l7a). As will he shown, 
this role is by no means small in the extreme rela
tivistic case. 

In the entire following exposition, in order to 
shorten the notation in the formulas, magnitudes 
characterizing the radiation from a "radiating" 
electron will be represented as the sum of two 
components. The first component, designated by 
the index (l), gives the "spinless" part of the 
radiation". More exact! y, this first part character
izes the corresponding physical magnitude of the 

radiation from a "radiating" boson (with spin 0 ). 
In order to simplify the formulas, it is convenient 

to go over to a continuous spectrum. Correspond
ing to what was said above, further calculations 
can he carried out with formula (2.17a), in which 
the "spinless part " of the radiation is contained. 

Let us transfom, the integral for W m in (2.17 a) 
into a surface integral by means of the well-known 
formula 

~ ... o(cp)d-c= ~ ... ,:;,, (2.19) 
<p=O 

where da is an element of the surface cp = 0. Then, 
instead of (2.17a), we obtain 

(2.20) 

where sm is a surface in (e-) space determined by 
the equation Cl?, (e-) = 0, d a is an element of the 
surface, and n is the outward normal. 

In the entire frequency region in which we are 
interested we can direct our considerations to the 
continuous sepctrum. Hence, for the production of 
the total energy of radiation we change from a 
sum over m to the integral 

n 

l17 = ~ W m dm. (2.21) 

0 

In this transition the family of surfaces S fills 
m 

the entire region, the boundary of which is deter-
mined by the equation cpn = 0. Let us take into 
account the fact that during the transition from one 
surface to another the identity 

(2.22) 

holds, and this leads to the equations 

dm = 2 (A- 0 (ocpm I on) dn, (2.23) 

(2.24 ) 

On putting Eq. (2.23) into Eq. (2.21), taking 
account of the value of Wm as given by Eq. (2.20), 
and noting that d a dn = d3 e- is an element of volume 
in the infinite space in which we are operating, we 
final! y obtain 

W = ~ ce2A ~<I> •• (s) d3§, (2.25) 

where 

v' = 2A;- ~2 sin2 &. 

For what is to follow, it is convenient to go over 
to different units. In the units used here the wave 
number of the basic classical oscillation ("first 
harmonic" in the sense of the classical theory of 
the "radiating" electron) is equal to 

~o = 1/2 A. (2.26) 

As a new independent variable we take the ratio of 
(;to e- 0 , that is, that which in the classical theory 
of the radiating electron is called the number of the 
harmonic. Setting 
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(2.27) 

we finally obtain 

ce2~2 \ ( v ) 
W = 4rrH." ~ ll>v' .2A d3v, 

Vn 
(2.28) 

where R = V n/y is the classical radius of the 
trajectory of the electron, 

v' = v [I - (v/4n) ~2 sin2 .& J, 

The region V n is the former region, but v = 2A gin 
the new units. 

3. THE DIFFERENTIAL SPECTRUM 

In wha~ follows we shall use approximations of 
the functwns ln,n' which will be correct for the 

~nt~re region of variation of the arguments and 
mdtces of these functions. The approximations 
were obtained by Klepnikov 4 and have the following 
form: 

I , (x) = _1_ vll - X K { 2 ( ')'/, (v- lft 
n,n rrV3 (Jln-Vn')2 'I• 3 nn n-y n) 

(3.1) 

x[l (Vn:_Vn')~rJ· 
n n' = 1 I , 1 (nn'>'1• [ x ] 
' TCV3 Vn-Yn' (Vn-Vn')2 (3.2) 

x K•J, { ~ (nn')''· (}In- V n') [ 1- , x . ]''•}. 
(V n- V n') 2 

On putting Eqs. (3.1) and (3.2) into formula (2.28), we obtain 

(3.3) 

(3.3a) 

( 2) ce 2 1 \ v 2 dv . 1 ( v ) 2 ( v )-1 2 
W = R2 3TC2 J 1 - v 1 2n sm & d& 2 2n 1 - 2/i 8~ (3.3b) 

X [K~~.(~ 1-:j.2n 8~')+ K~1.(~ 1-:/2n 8~·)J, 
where 

(.\2 • 2 (1. 

e~= 1-t' stn "'· 

The fact that in spherical coordinates d3v 
= v 2dv sin eded'f has been taken account of in 
formula (3 .3), and the integration has been carried 
out with respect to the angle Cf, on which, as a 
consequence of axial symmetry, the expression 
under the integral sign does not depend. The 
region of integration i~ set by the law of conserva
tion of energy-morr.entum. As stated above, the 
component w<ll corresponds to the radiation of the 
spinless particle. 

In order to obtain the differential spectrum it is 
necessary to carry out the integration in expres
sions (3.3) with resepct to the angle e. Because 

of the exponential fall-off in the expression under 
the integral sign as e departs from 7T /2, we may 
carry out an exchange of the variables COS e = X 

and extend the limits of integration to infinity. We 
encounter here a nun1her of integrals which may be 
evaluated with the aid of l\lellin transformation 
theory. In order for this to he done, a substitution 
must he made for the squares of the functions K 
with the aid of Nicholson's integral. 

K11- (z) Kv (z) (3.4) 
00 

= 2~ Kl'--v(2zcht)ch(fL+v)tdt, 
0 

and then the function K 0 must he expressed with 
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the aid of a relation obtained by means of l\lellin' s 
theorem from the well-known equation 

co 

~ K. (x) x~'-- 1 dx = 2""-2 r (fL ~ ") r (fL ~ "). (3.5) 
0 

The result obtained is an absolutely convergent 
integral in which we may interchange the order of 
the integrations. Then with the aid of the multi
plication forn,ula for !-functions 

I'(z)r(z+~) ... r(z+n n 1) (3.6) 

= (27t)(n-l)/2n'/•-nz r (nz) 

the expressions under the integral signs may he 
considerably simplified and the integrals evalu
ated. For example, for the integral 

co 

I= ~ s; !K0. (ps~") + K~1. (ps~j-}] dx, (3.7) 
0 

where Ex = 1 - {3 2 + x 2 , p > 0, there results, after 
the evaluations just mentioned, the expression 

(3.8) 

.,, 
Po= ps0 • 

The path of integration goes parallel to the imag
inary axis, to the right of the poles of the integrand. 
From Eq. (3.8) it follows immediately that 

co 

~ s; [.K~,, (ps'1') + K;,, (ps;')] dx (3.9) 

0 

= 7t ~ K.1 (2pe~"). l-'3 p • 

The other integrals are evaluated analogously. 
On carrying out the evaluations just mentioned, 

we obtain the following formulas for the differ
ential spectrum: 

2n 

W = ~ dW., dWv = dW~1> + dW~2>, (3 ·10) 
v-o 

co 

dw(l) 1 ce2 \ K ( ) d (3.10a) 
v =--==. 2 c:0vdv J '/8 X X, 

7t v 3 H. 2 v .,, 
3i=Vi2il &0 

(2) 1 ce2 ( 11 )2 ( 11 )-1 
d W v = 7t V 3 J<2 so 'I dv 2n 1 - 2n 

(3.10h) 

X K" (;_ --"-. z"'•) . '' 3 1-v;-:.n o 

These forn,ulas are correct for energies E << E y, 
= me 2 ( 2Rmc/3h )y,, as well as for energies E "-' E~ 
and E >> E y,, for the radiation of the entire spec
trum. The formulas for the differential spectrum 
which were obtained earlier by Sokolov and Ter
nov5 and Schwinger6 , and which are exact to 
within magnitudes of the first order in h, are special 

cases of formula (3.10) and may easily he ob
tained from it. For example, taking account of the 
fact that 

lj2n = (h / Rmc) (mc2/ £), 

s0 = 1 - ~2 = (mc2/ £)2, 

we immediately obtain from Eq. (3.10a) 

dW(l) ~ 3 V3 e2 (_§_)4 Cil 0 Cil dw 
~ 47t H. mc2 w~ 

co 

(3.11) 

X ~ K•1, (x) dx, 
(wJwc )(1 +hwJE) 

for (h w IE)<< 1, and this coincides with 
Schwinger's formula. Similarly, we may obtain 
Sokolov and Ternov's formula, for which the same 
limiting condition holds. 

In order to analyze the spectra it is convenient 
to transform to another variable I;= h w I E. Then 
the formula for the differential spectrum of the 
"radiating" electron takes the following form: 

ce2 (mc)2 • [ r dW = 7t y;r T Edt; .) K•1, (x) dx 
(3.12a) 

~/(1-!;)~ 

+t ~\K·,.(t ~ ~+)J. 
while the forn:ula characterizing the radiation of 
the spinless particle is given by the equation 

dW(l) = ce2_ ( mc)2 ~ d~ 
-;rJ/3 \ h 

co 

>< ~ K•;, (x) dx, 
~/(1-1;)~ 

(3.12h) 

, 3 h ( E )2 
'"' = 2 H.mc mc2 • 
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In the cases which are most interesting from the 
point of view of the influence of spin, nan,ely, 
those of extremely relativistic energies ( C::>> 1 ), 
the following formulas, applicable to almost the 
entire spectrum, excluding the part in immediate 
proximity to the high frequency end, are obtained 
from Eq. (3.12): 

a) for the electron 

d\17 ~ ce2 3'/, r (2/ 3) (Rmc)'l, (_!!_)'/, 
H.~ n h 1 mc2 

(3.l3a) 

x d~~~,. (I- ~)' 1• 0 + ~2 12 u- m. 
b) for the spinless particle 

d\V(l)~ ce 2 3' 1•f(2/a) (Rmc)'/, (3.13b) 
~ R 2 n h 

X (m~2 f'd~~·;, (1- ~)21'. 
The formulas obtained allow us to investigate 

the differential spectrum of the electron and the 
spinless particle for any energies. From the formu
las for the differential spectrum it is immediately 
clear that for arbitrary energies and for the entire 
spectral region the spectrum of the radiating boson 
lies below the spectrum of the radiating electron. 
For increasing energies ( C::-> oo) the maximum 
density of the radiation of the electron comes to
gether at the far end of the spectrum. The maxi
mum density of the boson's radiation does not 
coalesce at the end of the spectrum in this case, 
but comes together at a point of the spectrum 
lying at approximately one third the distance from 
the beginning. A very typical case, showing the 
difference between the spectra of the radiating 
electron and boson, is shown in Fig. l. This 

.ITVJ (.!!_ / tlltl 
aZ fTIC d~ 
.f(} 

1/(J 

/0 

---
/"" 

"-><" 
~;<_x..... ""-: 

x-x--x-' ........... 

-x.-x-- j_______j_ ' 

(}1 flZ O.J iJll <lJ flo I) 1 flo fl,S Ill( 

FIG. 1. 

Figure shows the spectra for C:: = 100. The spec
trum of the electron is shown by the continuous 
line, while the "dash-dot" line shows the spec
trum of the boson, and the "dash-cross"line 

shows the "difference" in density of the radiation 
of the electron and boson (the "role of spin"). 
The dashed line shows the spectrum given by 
classical theory. The remaining part of the spec
trun, given by classical theory, that on the high
frequency side, is not shown in the Figure, since, 
in virtue of the law of conservation of energy, these 
higher frequencies cannot actually be radiated. 

It is clear from Fig. l that the difference in 
density of the radiation of the electron and boson 
is quite significant in this extreme relativistic 
case, and that the n1ain contribution to the density 
of radiation is produced in the second half of the 
spectrum "at the expense of spin". 

4. TOTAL ENERGY OF RADIATION 

In order to obtain the total energy of radiation 
we must carry out an integration over v in Eq. 
(3 .10). Changing the variable of integration to 

2 v .,, 
X=- 2" 

3 1- v ;2n ° (4.1) 

we can represent the total energy of radiation in 
the form 

W' = W'kl il ((), il (~) = cp(l) (() + ~2 :p(2 ) ((); (4.2) 

(p(ll (~) = 9 V3 ( x 2K,1, (x) dx (4 .3) 
' 16 7t J ( [ + ~X )2 

0 

(4.4) 
d 2> (") = 9 YT f X3K2 1, (x) dx 
' " i:>n .) (1 + ~x)4 

0 

These integrals may be evaluated with the help 
of l\lellin transformation theory. The integral for 
qP> ( t;;) with respect to C:: is absolutely converg-
ent ( C:: > 0) . The integral 

00 

Q (() = \ xK,1, (x) dx 

.\ 1+~x 
0 

(4.5) 

is also absolutely convergent. Hence, Eq. (4.3) 
can be written in the form 

cp<l) (() = - (9 y3 1 16 rr) cJQ 1 a~. (4.6) 

Using the same method used in obtaining the 
formulas for the differential spectrum, we can show 
that 

Q= 7t 2 1 
4 ex. 2ni (4.7) 

k+ioo 

X c.· r (s/2- "'is) r (s/2 + 5j6) ( r:J. )-s 
\ sin ns 2 ds' 

h-icc 

OC= 11~, 513<k<2. 

On evaluating this integral we obtain 
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Q (C) = _ ;._ 'TC2 _1 [w., (_!_) + V3 c] 
3 ~?. 1 ~ 27t ' 

(4.8) 

where we have introduced the notation 

<I>v (z) = i-V [Jv (z)- JV ( z)J (4.8a) 

+ iv [J -v (z)- Lv (z)], 

and] v and Jv are the well-studied functions of 

Bessel and Anger. 
An evaluation of (4.4) by an analogous method 

leads to the integral 
CX> 

\ K,1, (x) dx _ 71:2 1 ( i ) 
~ 1 + ~x - 2 sin2 (27t 1 3) ~<I>,,, T · 
0 

(4.9) 

Hence, we finally obtain the following expres
sions for the total energy of radiation: 

a) for the electron 

(4.10a) 

_ a YJ' { a <D.1, (i 1 ~) 
--~:~-'It a~ ~~ 

~2 aa <D,1, (if~) v:r 1 1 
-3 a~a---~-- 27t VJ · 

b) for the spinless particle 

w<l) = w kl cp(1) (C), (4.10b) 

<1l (C) = 3 V3 'It {.!.. <D,1, (i I~) _ V3 __!_} 
rr 8 a~ ~2 Z7t ~2 • 

In order to find the asymptotic expressions for 
the total energy of radiation for (; << 1, it is 
necessary to use the well-known asymptotic ex
pansion of the Anger functions 8 , with the aid of 

which we obtain 

(C) _ 1 _ 55 V3 r + 64 r2 

cp - 24 " 3 " (4.lla) 

_ 8855 V:f ra + 89600 ,.4 _ 
1lJ8 ~ 81 ~ ... 

(1) (~") ~ 1 _ 55 V3 r 
cp '> ~ 24 "' 

(4.llb) 

+ 56 c2 _ ?_?45 V3 ra + 56ooo r4 _ 
3 108 " 81 "' ... 

The asymptotic expansion (4.lla) of the exact 
formula (4.10a) coincides with the asymptotic ex

pansion found in Ref. 4 by direct evaluation of the 
total energy of radiation in the asymptotic sense. 

The first correction term was evaluated by Sokolov, 
Klepikov and Ternov 7 • This term has also re
cently been obtained by Schwinger6 • 

For (; >> l we may use series for the Bessel and 
Anger functions and keep the desired number of 
terms. As follows directly from Eq. (4.10), the 
main terms in the total energy of radiation have the 
following form: 

a) for the electron 

w<"") ~ (32 r (2fa) 1 (27 ·3''')) (4.12a) 

X(ce2 I R2) (Rmc I h)'1• (E I mc2 )'1•; 

h) for the spinless particle 

(4.12b) 

It is clear from this that in the extreme relativis
tic case ( (; >> 1) the spinless particle radiates 
only approximately 9/16th as much as the elec
tron. Thus the "role of spin" is very significant 
in the radiation in the extreme relativistic case. 

In the case of (; << 1 the "role of spin" is de
termined by the ratio obtained from Eqs. (4.lla) 
and (4.llb). 

w ~ 1 + ~C2- 275 VJ" ca +·.. (4.13) 
Uf(1) 3 18 

Thus it is clear that in this case the spin correc-· 
tions are of second order of smallness as compared 
to the quantum corrections (second order in h). 
This is the reason that Schwinger6 , in calculating 
the first quantum correction for the radiation from 
the spinless particle, obtained the same result which 
Sokolov, Klepikov and Ternov 7 obtained earlier 

fron, the Dirac electron. 
It should be remarked that for h -> 0 the exact 

formulas (2.17a) and (2.17b) go over into the exact 
formulas of the classical theory of the radiation 
from a "radiating" electron. This may be shown 
with the help of the relation 

lim I n,n-v (4z2) = Jv (z). 
n+ oo; v,Z<=f=O n (4.14) 

It follows from this that there must be no factor 
of type 1 + (rnc 2/£)2 in the formulas, since this 
factor does not depend on h and does not disappear 
for a transition to the classical lirr.it h -> 0. 

With respect to the physical reason for the dif
ference in the radiation of the electron and the 
spinless particle, Sokolov (see Ref. 3) has shown 
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that in the case of extreme relativistic energies 
this difference evidently depends on the behavior 
characteristics of the spin magnetic moment of the 
electron. It should be noted, first of all, that in 
the relativistic case the electron, in a n,anner of 
speaking, "loses" its magnetic moment in accord-
ance with the formula 

fL ::::::::: fJ.omc2 I E, fLo = eh I 2mc. (4.15) 

However, on the other hand, with increasing energy 
the interaction with the high-frequency parts of the 
virtual field of th.e photons plays an increasingly 
significant role in the radiation. 

The matrix elements characterizing the radiation 
at the expense of the magnetic moment and at the 
expense of the charge interaction are proportional 
to the magnitudes "- f1ll "- flXA and "- eA, re
spectively. Consequently, the ratio of the energy 

of radiation W fl at the expense of the 

magnetic moment to the energy of radiation 
We at the expense of the charge inter-
action is equal to(W /W )"-(flW /ec) 2 in fL e max 

order of magnitude. In the case of ( << 1, the 
maximum frequency is given by w ""w (E/mc'J:..3 

max 0 ) ' 

while for ( » 1 it is given by w ""E/h. Hence, 
max 

we obtain at once 

for c~ 1' 

for C ~ 1. 

Thus the statement of Sokolov corresponds conJ
pletely with the results of the present work. 

I wish to express my gratitude to Professors 
A. A. Sokolov, N. P. Klepikov and I. M. Ternov for 
many discussions of the questions considered in the 

present work. 
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. A study is made of the statistical model of the nucleus with uniform density distribu
tion of the nuclf;ons, on the basis of .a tw~-nucleon inte~action potential of the type of the 
Lennard-Jones mtermolecular potential wrth a hard barner. It 1s shown that saturation can 
be obtained with a certain choice of the parameters in the potential. 

} THE explanation of the stability of atomic nu-
• clei is one of the main problems of the theory 

of nuclear structure, directly related to the ex
planation of saturation, which consists of the fact 
that in medium-weight and heavy nuclei the density 
of nucleons and the binding energy per nucleon are 
roughly constant. The existence of saturation has 

always placed restrictions on the choice of one 
or another kind of theory of the nuclear forces, 
which it is still impossible to determine unique I y. 
At first it seemed possible to achieve saturation 
by means of exchange forces of various kinds. 1 

But the data on the scattering of nucleons (n-p 
and p-p) at moderately high energies(~ 100 mev) 


