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General baroclinic isentropic relativistic gas flows are analyzed. Equations of vorticity,
and a nonlinear equation of propagation of sound waves are derived. In the case of barotropic
flow, a relativistic generalization of Thompson’s theorem is found.

IN classical hydrodynanics, one can prove that for a
barotropic isentropic gas flow* the circulation of
the velocity around any closed curve nioving with
the fluid remains constant in time. In such a flow,
vorticity of the velocity field can neither be created
nor destroyed. If the flow is at one time described
by a velocity potential, it retains this property for
all time.

We shall prove that analogous theorems** hold
in relativistic hydrodynamics. The situation dif-
fers only in that the ordinary 3-velocity of classi-
cal hydrodynamics must now be replaced not by the
relativistic 4-velocity

u; = gtk = gydx*/ds

(s being the proper time ), butby the ““pseudo-
velocity”’

U; = Jui, (])
where J = (w/p) is the relativistic heat content
per unit of rest-energy. Here w is the relativistic
heat-content per unit of proper volume, and p is the
rest-energy per unit proper volume, i.e., the rest-
energy which the gas would have at absolute zero
temperature. The dimensionless state-parameter
J is always greater than unity.

By S we denote entropy per unit of rest-energy.
In relativistic thermodynamicsl, S satisfies the
equation

TdS = dJ —dpjp (2)

* By isentropic we mean a flow in which the entropy of
each small element of the gas remains constant in time;
by barotropic we mean a flow in which the entropy per
unit mass is the same for all elements.

** Khalatnikov? was the first to investigate rela-
tivistic potential flows. We shall here discuss in

greater detail flows possessing vorticity.

where p is the pressure. We make no assumptions
about the properties of the gas. We assume an

equation of state p =p (p, I'), and a dependence
of the internal energy-density e on p and T, these

relations being completely arbitrary, subject only to the
laws of relativistic thermodynamics and to the
identity w = e + p. We further introduce the dimen-
sionless relativistic sound-velocity

a = ajc = V (0p/de)s ®3)

where ¢ is the velocity of light.

We shall prove that, when the ordinary velocity
is replaced by the pseudovelocity v;, the rela-
tivistic theory gives a system of equations for v,
and S completely analogous tothe equations of
classical hydrodynaniics. We carry through the
analysis for the case of rectilinear coordinates in
special relativity, i.e., assuming 8;, constant. The

transition to general relativity can be made in the

usual way, by rewritingthe equations in aformwhich

is invariant under general coordinate transformations.
The energy-momentum, equations are*

0T [dxx = 0, T¥=wuu* — (4)

and the equation of conservation of mass is
0 (pu*)/0x = 0. (5)

Using Eq. (5) we reduce Eq. (4) to the form
put dv; [ Ox, = dp | dx; (6)

(the relativistic Euler equations), and hence, by
means of Eq. (2) to the form

ut0v; [ 0xp, = dJ | 9x; — T S | dx;. (7

* The sign of the tensor 8k is chosen so that the dif-
13

ferential of proper times is ds = (gikdxidxk )i
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Because of the identity
g"’uhuz =1

the expression (1) for the pseudovelocity implies

gHluguy = J2. (8)
Differentiation with respect to x, gives
ghu,0vy [ 0x; = J 0J [ 0x;
or
uk duy, [ 0x; = 0J | 0x;. )
Subtracting Eq. (9) frons Eq. (7), we find
ur (jik_‘;_>=_rgi (10)

These are the well-known vorticity equations of
classical hydrodynamics, with the curl of the velo-

city replaced by the curl of the pseudovelocity.
Multiplying Eq. (10) by u* and contracting, we ob-
tain immediately the equation of conservation of
particle entropy

dS /ds = u! 0S| 0x; = 0. (11)

We proceed to transform the equation of continu-
ity (5). Putting uk = v*/J, we find

o dv

de/J) _
WA +J T = 0.
From Eq. (11) and (2) we deduce
d J - aJ
©) & @*—1) %, (12)
and so the continuity equation takes the form
(dok [0xp) + (@ > —1)dJ [ds=0.  (13)
From Eq. (8) we have
JdJ|ds = vidv;/ds
or
dJ [ds = udv; [ds = ui u* dv, / dxy. (14)
Therefore, Eq. (13) becomes
[git+ (@ *— 1) uiut]do; [ 0xx = 0. (15)

This equation, when both flow and sound velocities
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are small, reduces to the classical equation of
propagation of sound, including the effect of wind-
velocity. In terms of general coordinates, and in
general relativity, the corresponding equation is

[gi* + (@ — 1) uiuk]

XI(aU,‘ /0xh) —_ I‘fhvz] = 0.

(16)

The whole system of hydrodynamical equations is
contained inEgs. (10) and (15).

The theorem governing the circulation around a
line moving with the fluid in a barotropic flow is
obtained as follows. In a barotropic flow Eq. (7)
gives

uk dv; [ Oxy = 0J | Ox; (17)

or aU,’/dS = OJ/axi,

where d means differentiation along the path of a
fluid-element. Let & denote differentiation along
the line around which we are considering the cir-
culation of pseudovelocity

I'= § U; Sxt.
Then

dT'/ds = ESS[(dv,- /ds) 8xi+ v;d dxi [ 4]

(18)

= @ [(0J / 0x;) dxt + v; duf)

= é& 18] + 1/, I3 (usu')] = SSS 8] =0,

showing that I" remains constant in time. Strictly
speaking, we must say that the circulation of
pseudovelocity around a fluid line is equal in two
successive positions, if each fluid element along
the line has lived through the same interval of
proper-time in moving from the earlier to the later
position. From this theorem follows the impossi-
bility of creating or destroying vortices of pseudo-
velocity in a barotropic flow.

If in a barotropic flow the pseudovelocity is de-
rived from a potential (v, = dq;/dxi), then the rela-

tivistic Euler equations follow automatically. In
this case

ik 92 0% _ J2
0x; 0x}, ’
and so
ginde O _ ;0/ _ Jop
0x; 0x 0x,; 0x; p Ox;

which gives
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uk guy, [ 0x; =p~10p | x4,
i.e., Eq. (6). In a potential flow, the equation of
sound-propagation (15) becomes
[gi* 4+ (a > — 1) u'u*] 0% | 9x; Oxp = O. (19)

In a barotropic flow, @ depends only on J, and
hence, by Eq. (8) on the pseudovelocity; therefore,

Eq. (19) contains only the potential ¢ and its
derivatives, and the entire problem in this case re-
duces to the solution of the single equation (19).
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