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The Thomas-Fermi equations for the potential in an atom are obtained from the Fock self
consistent field method, together with all corrections of order z-2/3, where Z is the atomic 
number of the element. It is shown that the correction put forward earlier by Weizsacker was 
too large by a factor of 9. The exchange correction found by Dirac is in principle correct 

only if it is small in comparison with the main term in the potential. 

1. THE EQUATION FOR THE DENSITY MATRIX 

AS is well known, the best method for finding 
the terms of the many-electron atom is that due 

to V. A. F ock. F ock' s method is based on the 
fact that the integral J'l' * H 'I' dq is stationary 
for all eigenvalues of the Hamiltonian H of the 
atom. In particular, this integral has an absolute 
minimum for the ground state of the atom ( q de
notes the set of all space and spin coordinates of 
the atom). The wave function is subject to the 
condition 

(l) 

In the Fock method the wave equation is chosen 
in the form of a symmetrized product of the wave 
functions of the individual electrons t/Ji ( q): 

(4) 

where the function V is symmetric relative to both 
variables entering into it. In the atom, U is the 
sum of the kinetic and potential energies of the 
electron in the field of the nucleus, V is the energy 
of electrostatic interaction of the electrons. Sub
stituting (2) and (4) in the expression J'P* H'l' dq, 
and making use of Eq. (3), we get 

~ 'l''* H'J!'dq = ~ ~ y; U~; dq + 
l 

(5) 

~ ~~ y; (q')~: (q) v (q, q') [•fi (q') ~k (q) 
I, k<i 

- ~i (q) ~k (q')J dqdq'. 

'¥ = (Z!)-'1• .L (-) p • IT ~i(Pq) Here q on the left refers to the entire atom, while 

p 

( P denotes a permutation of the variables of the 
individual electrons). 

(2) on the right it refers to the individual electron. The 
variation of Eq. (5) is given by 

The wave functions t/Ji ( qi) can always be re-

garded as mutually orthogonal and normalized, 
since they can be orthogonalized by a n,ethod of 
linear substitution. If the function t/J is chosen 
in the form (2), then it is possible, without further 
limitation of generality; to introduce, as an addi
tional condition on the wave function, 

~ ~; (q) ~k (q) dq = o;k (3) 

in place of the earlier requirement (1). 
Before varying the energy integral, we put it in 

a special form,making use of the fact that the 
Hamiltonian contains only terms that refer 
to the individual electrons and to their pairwise 
interaction, 
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~ o'P·· H'¥ dq = f ~a~; (q) dq { u~i(q) (6) 

+ ~ ~ 'f~ (q') v (q, q')[•f; (q) 'h (q') 
k<i 

- ~i (q') ~k (q)] dq'} 

= ~ ~ o•f; (q) dq [ U•h (q) 
l 

+B(q)~i(q)- ~B;k(q)yk(q)]. 

" 
where the following abbreviating notation is used: 

B;k(q) ~ ~~ (q') V (q, q') ~;(q') dq', (7) 

B (q) =--= ~ Bkk (q). 
k 
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Multiplying the additional condition (3) by the 
variation parameter aik and adding the variation of 
Eq. (3) to the variation of the energy integral, we 
get a system of equations for the desired wave 
functions tjJ.: 

' 
U (q) 'f; (q) + B (q) ·h (q) (8) 

- h B;k (q) 'h (q) + h au, tfh (q) = 0. 
k k 

It is essential that the term in which i = k is not 
excluded. 

It is easy to express the parameters aik in terms 
of integrals of U, B and B ik' making use of the 
condition (3). That is, 

a;" = ~ ·jJ~ U•jJ;dq + ~ ·!(~B·hdq- h ~ •jJ;,Bil'~zdq. (9) 
l 

Making use of the definitions, it can be shown that 
the matrix aik is Hermitian: aik = at. 

Equations (8) can be rewritten in very compact 
form if we introduce the density matrix p ( q, q '), 
which is defined in the following form 1: 

p(q,q')=~·f;(q)·~;(q'). (10) 

Here the wave functions t/Ji ( q) are excluded from 

the equations. 
In order to arrive at the density matrix p ( q, q '), 

we write down, along with Eq. (8), the equation for 

the complex conjugate function o/f ( q'): 

u· (q') ·'t; (q') + B* (q') ·jJ~ (q') (8*) 

- h s;" (q') ·~; (q') + ~ a;,,·jJ; (q') = o. 
h k 

We now multiply Eq. (8) by t/J£( q ') and Eq. (10) by 
t/1 i ( q ), sum over i and subtract (8*) from (8). Terms 

containing aik and a£k vanish in this case since 

"' • ( ) •• ( ' ,, • * .L..Jaih'?h q <J; q)-.L..Ja;h·~,,(q')·~;(q) 
h k 

"' ' ( ) '. ( ') '\l • * = .L...J a;h'/k q '-(; q - L.J a,,; 'h (q') ''th (q) = 0 
h " 

by virtue of the Hermitian character of the matrix 

aik" 
The terms in U and B involve the matrix p(q,q'). 

The expression containing B ik can also be de-

scribed with the aid of p. Actually, we get in Eq. 
(8) 

_h B;k (q) 'fk (q) 'f; (q') (ll) 
h 

= _L~·f~(q")V(q, q")·'-(;(q")dq"•'-(k(q)'f;(q') 
ih 

= ~V(q, q")p(q, q")dq"p(q", q') 

and in the analogous transformation of (8*), 

~ t\J; (q) y; (q') ~ y" (q") v (q', q") ·~; (q") dq" (11*) 
i, k 

= ~ p (q, q") dq" p (q", q') v (q", q'). 

If we introduce the operator 

A -- ( ") l! ( ") qq" = p q' q ~ q, q ' (12) 

thenEq. (11) is rewritten as 

~But(q)•'-(k(q)•f;(q')=~A,1 ,/'dq"r,(q", q'), (13) 
i," 

while (11*) has the form 

~ s;" (q') y; (q) y~ (q') = ~ p (q, q") dq" Aq"q', (13*) 
i, k 

where use is made of the obvious symmetry of the 

interaction operator V: 

v (q', q") = v (q", q'). 

Terms which derive from B can also be expressed 
in terms of the density matrix: 

B ~ 'r; (q) 'f; (q') 

i =(~r(q", q")V(q, q")dq")r(q, q'). 

Introducing the operators 

Bqq" = o (q- q") ~ p (q"', q"') V (q, q"') dq"'; (14) 

.ur.q'' = o (q- q") u, 
we get an equation for the density matrix in the 
form 

~ dq" [(Uqq"+Bq,/'- Aqq") p (q", q') (15) 

- p (q, q") (U q"'i'+Bq"q'- Ar/'rt)]=O. 
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This latter equation represents the Poisson bracket 
between the operators 

Hq," == U " + B A 1 (/fJ qq'l- qq" 

and the density matrix: 

Hp-pH = 0. 

In other words, H is the effective Hamiltonian 
operator. In this operator, the term B corre-

(16) 

(17) 

sponds to the self-consistent field which is associ
ated with the electron density distribution, while 
the term A is the so-called exchange energy opera
tor. 

It is evident in these equations, therefore, that 
the antisymmetrized wave function 'II [see Eq. 
(2)] was taken, from the very beginning, in ac
cordance with the Pauli principle for the electron 
system. Equation (17) differs somewhat from the 
usual equations of quantum mechanics by the fact 
that the Hamiltonian operator ll itself depends on 
the density p. 

We now eliminate the spin variable, making use 
of the fact that the initial Hamiltonian (4) did not 
depend on the spins. The density matrix is 
diagonal relative to the spin variable since, in the 
sum over i, one can substitute the entire system of 
spin functions. Therefore, the exchange operator is 
also diagonalized in the spin variables. The 
operator B qq" contains, in comparison with 
Aqq", an additional integration over q"', which 
also includes summation over the spins. This 
gives an additional factor of 2 in B " in com-
parison with A " ( Dirac 2 first wr~t~ the A with qq 
the extra factor of 2, which was latter corrected by 
Jensen 3 ). 

Thus we need no longer describe all the quanti
ties by the total set of variables q hut only by the 
space variable r, because all the expressions are 
diagonal relative to the spin variable: 

A " - e2 p (r - r"), rr - l r -- r" I 

B " = 2il (r- r") e2 \ P lr"', r"') dr'". 
rr .) I r- r'" J 

2, TRANSITION TO THE QUASICLASSICAL 

APPROXIMATION 

(18) 

(19) 

Dirac 2 has pointed out that, by way of a transi
tion to the quasiclassical approximation one can 
obtain the well-known Thomas-Fermi potential 

distribution in the atom from Eq. (17). In this 
case the Dirac exchange operator gave a term in the 
equation for the potential which was less than the 
other terms in the ratio Z- 2 I 3, where Z is the 

atomic numb~r of the element. This exchange 
term is treated by many authors 3 -s not as a small 
correction relative to the equation itself, but on a 
level with all the other terms of the equation. We 
shall show that it is not possible to treat it in 
this fashion. 

The limiting transition to the quasiclassical 
approximation in the work of Dirac consisted of 
the fact that the quantum Poisson bracket for the 
density matrix p ( r, r ') was simply the substitu
tion of the classical Poisson bracket for the 
Fourier coefficient of the density matrix. ~lean

while it appears that if we do not restrict ourselves 
to this approximation, but find the term of next 
order of smallness, a correction appears that is 
proportional to z- 21 3 ' and also an "exchange 
term", omitted by Dirac in the equation. As will 
be shown below, this additional term, proportional 
to z- 2 1 3 , enters with a numerical coefficient that 

is small in comparison "'ith the exchange term. But 
in each case it is appropriate to solve the e qua
tion with the "exchange term" accurately. Each 
term proportional to Z-2/3 must be considered 
only as a correction of the corresponding order to 
the usual Thomas-Fermi equation. 

It should be pointed out that Weizsacker 6 at
attempted to improve the Thomas-Fermi equation by 
introducing other correction terms in it of order 
z- 2 1 3 in addition to the exchange terms. But the 
method used by Weizsacker is not convincing. In 
fact, it is shown that the correct expression, cor
responding to corrections following from Eqs. (17~ 
is less than Vveizsacker's by a factor of 9. From 
this it follows that the exchange correction is pre
dominant in comparison with the other terms of 
order z- 21 3 , so that in the numerical expression, 

the corrections,thus far produced,of the usual 
Thomas- Fermi equation must he con-
sidered valid. But this conclusion is correct only 
so long as the exchange correction term is small 
in comparison with the fundamental. The latter 
condition is not always fulfilled: for example, at 
great distances from the nucleus the correction al
ready surpasses the fundamental term. 

We now perform the transition to the quasiclassi
cal approximation. For this purpose we first repre
sent the matrix elements p(x, x') and ll(x, x') in 
the form of expansions in Fourier integrals in the 
difference of the arguments x - x ': 
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p (x, x') = ~ p (p, x ~ x')eip(x-.r'ldp, 

\' ( x --1-- x'\ H(x, x') = jff \p, - 2 -)eip(x-x'ldp, 

(20) 

(21) 

where all the arguments are vectors, so that x 
stands for r, etc. We substitute these expansions 
in the Poisson bracket: 

Hp- pH=~ dx" [H (x, x") p (x", x') 

- p (x, x") H (x", x')] 

(22) 

= ~~~ dx"dpdp 1 [If (p1 , x -t;x") p (p, x" t x') 

( x + x") ( x" + x')] - p Pl• -2- H p, 2 

)(exp {ip1 (x- x") + ip (x"- x')}. 

In the first component of this integral we make the 
following change in variables: x" = x + ( + ~' 
x' = x - ~' p = p - q. In the second component 

l 
we exchange the designations p and p 1 and set 
x" = x + (, x' = x - ~. p 1 = p + q. After these 
changes, the Poisson bracket takes on the form 

~ dpeipt::.. ~~ dqd(eiq (t;+t::..l p (p, x + ; ) (23) 

X [ H (P - q, x + ; + ~ ) 
- fi (P + q, x + ; - ~ J] = 0. 

In the transition to the quasiclassical approxima
tion we must consider the region of motion and the 
momentum in the integral (23) to he large. In other 
words, we have a large momentum p and coordinate 
(because (enters only in the combination x 

+ ( / 2 (we set lr == 1, and we also employ e == 1 and 
m = 1 in what follows, i.e., we shall use atomic 
units). But if the coordinate (is large, then the 
momentun difference q is correspondingly small, 
since the product q( appears in the exponent. The 
difference in coordinates ~ must also he regarded 
as small because it enters into the exponent mul
tiplied by a large morr:e ntum p. C onse quentl y, the 
difference of Hamiltonians under the integral sign 
can he expanded in a power series in q and ~. 
We limit ourselves to the third term of the ex
pansion. It is evident that the zeroth and second 
terms vanish, leaving only the first and the third. 
We shall first write the formulas without tensor 
notation, which is easilyinserted in the final re
sult. The expansion is as follows 7 : 

H(p-q,x+; + ~) (24) 

- H (P + q x + .I..-~) = - 2q aH + D. oH 
' 2 2 ap ax 

( Ll )2 ()SH ( Ll )a ()3H] 
- 3q 2 apax2 + 2 oq3 • 

It is easy to get rid of the factors q and ~ hx in
tegration by parts, replacing qei(q and ~eipll by 

-i(a/a()eiq( and -i(a/ap)eiP~. Equating the 
Fourier coefficient to zero, we obtain (upon inte

gration by parts) the following expression, written 
in tensor form: 

(25) 

_ 3 o'H aap 

oxioxkopz opiopkoxz 
iJ3p 

The first two terms in this equation represent the 
classical Poisson bracket of the Fourier coeffi
cient of the density p, while the remaining terms 
give the quantum correction to the Poisson bracket. 
The study of this cocrection is a fundamental pur
pose of the present research. 

3. INVESTIGATION OF THE SELF~CONSISTENT FIELD 
IN THE QUASICLASSICAL APPROXIMATION 

In the simplest approximation, the Fourier co
efficient of the density matrix has the form 

Po=Po(P-Po(r))={l,p<,po(r), (26) 
0, p >Po (r) 

In other words, all states in which the momentum 
is less than a certain limiting momentum p 0 ( r) 

are occupied, while the states for which p>p 0(r) 

are unoccupied. With the help of p0 one can de
termine the Fourier coefficients of the various 
terms of the Hamiltonian (we are dealing here 
with the Fourier coefficients relative to the dif
ference in arguments x - x ', so that the coordinate 
dependence enters into them through half sums of 
the arguments). 
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The self-consistent potential B [see Eq. (19)] 
gives the following expression for the Fourier 
coefficient: 

2 \ dr" 
B = (27t)a j r- r" ~Po (p - Po) dp (27) 

1 \ ' dr" 
== 31t' 2 .) r- r'' 

p~(r~). 

Here ( 211 )- 3 is the Fourier coefficient of the o-
f unction o ( r - r '), and the inner integral is equal 
to 417 p 30 / 3 according to the definition of the 
function p 0 • The spin states lack the factor 2 

entering into B. 
The exchange operator is transformed as fol-

lows: 

(28) 

A = e _r_ dplp (pi-P ) e-ip' <r-riJ ~ ip (r-r') d 1 ~ 

P I r- r I l (~7t)3 o o 

= _1_ \ dplp (PI-p ) \ drl ei (p-p'. r-r'). 
(27t)a ~ o o ~ l r- rl I 

As is known, the inner integral is equal to 
417 I p - p 'I -2 • Subsequent integration over dp' 

is elementary and yields 

2 2 

A =-1 (Po-P lnPo+P + 2P )· 
P 21t P Po-P o 

(29) 

In comparison with B, A has the smaller order 

of magnitude, which will be shown later after 
transition to Thomas-Fermi units. Therefore, in 

this approximation, the Hamiltonian is 

p2 z 
Ho=T-r+B 

(30) 

= i2 - ~ + 3~2 ~ -~-r _dr_'~-;;.,-i p~ (r"). 

In accordance with Eq. (25), the function p 0 in 
this approximation should cause the vanishing of 
the classical Poisson bracket: 

oH0 op 0 _ oH0 ~ = O 
opi oxi oxi opi . 

From the expressions for H 0 and Po we get 

oH0 _ • oH0 

ap. - p;, ax. 

' = x) :r L~2 ~ r~"r"i pg(r")- ~); 
op 0 Pi '· op 0 X; dpo ' 
ap; = p Po• 75X; = -- r Tr r1o' 

so that the Poisson bracket has the following 
form: 

~ 1 [P dp0 
pr Po dr 

(31) 

d ( 1 ~ dr" Z )] + Jr-r"J P3o(r")--r =O. dr 37t2 

The function p~ differs from zero only for p=p 0 . 

Consequently, for this value of p, the expression 
in the square brackets vanishes: 

dpo + !!_ (-1- \ p~ (r'') dr" - .!_) - 0 (32) 
Po dr dr 37t2 ~ r - r" r - · 

This equation is directly integrated; from the con
dition at inifnity, the integration constant must be 
set equal to zero: 

p~ 1 ~ pg 1 z --:;- + -3 " . , 1 dr - - = 0. 
"' 1t- ; r- r r 

(33) 

The expression on the left side of this equation is 
the energy computed for the limiting value of the 
momentum p 0 • As we see, it is equal to zero. 

Therefore, the function p 0 can be written in the 
following form, which is very useful for further 
calculations: 

0 _ p (£) _ {I, Eo~ 0, ,o- o o-
0, E0 >O. 

(34) 

It is easy to transform Eq. (33) to its usual form. 
Actually, setting 

1 ~ pg (r") z 
co - -- ---;;--,- dr" + -' o - ~7t2 i r - r" 1 r ' 

(35) 

we see that 

(36) 

But, according to Eq. (33), p~ = 2 %• so that the 
potential satisfies the Thomas-Fermi equation: 

(37) 

We now proceed to the equations of first 
approximation. For this case we write the density 
matrix and the potential in the form of expansions 

P =Po+ P1 =Po (Eo)+ P1• 'f = 'fo + tf/1· (38) 

Here cp0 is by definition the sum of the potential 
of the nucleus and the self-consistent field of 



SELF-CONSISTENT F·IELD E-QUATIONS 333 

zeroth approximation. The function Po ( E 0 ) is de
termined by Eq. (34). We shall substitute the 

correction terms cp1 and p 1 only in the Poisson 
bracket of zero approximation; in all the remaining 
terms of Eq. (25) and in the exchange operator, we 

shall use the zeroth approximation. 
If we sub~titute the Hamiltonian H 0 according 

to Eq. (30) in the part of Eq. (25) which contains 

third derivatives, then it is easy to become con
vinced that there remains only the first term in the 
square brackets. Actually, all the mixed deriva
tives of H0 with respect to x. and p. are equal to 

! ! 

zero; moreover, H 0 has only a derivative with re-

spect to pi no higher than second order. Cal
culating the derivatives, we have 

It is useful to split off the factor ( p, r) and, in the 
remaining Ji'art, to change the independent variables 
entering into the problem: instead of p, r and ( p r) 

we introduce the variables 

(40) 

M2 = [r, p]2 = p2r2 _ (p r)2 

and r. In the new variables, the third derivatives 
take the form 

aaffo aaPo 

axiaxkaxz apiapkapz 
(41) 

+ 3 d2P'o ( d2~o + ~ dcpo )} = - (pr) ai 
dE~ dr 2 r dr - r Tr ' 

where the meaning of I is obvious. 
It f~llows t~at the exchange energy A [see Eq. 

(29)] Is substituted only in the Poisson bracket of 
zeroth approximation: 

aA apo aA ap 
------- 0 

(42) 
api ax; ax; api 

= _ (pr) dpo ( aA + aA ) ap0 

pr dr ap apo - ap P-Po 

= - (pr) _i__ dpo dpo =- (pr) _.!._ _.!!:._ v- dpo 
r 7t dr dEo r 7t dr 2<po F . 

We shall assume that the correction to the 
density is given in terms of E 0 , M2 and r. As is 
well known, the classical Poisson bracket of 

0 

any integral of motion or of any function of inte
grals .of ~otion reduces to zero. Therefore, upon 
substitutiOn of P 1 into the Poisson bracket of 
zeroth approximation, only that term fails to vanish 
which has a derivative with respect to r. This 
term is equal to 

affo apl - (pr) apl 
Opi OX; - -r-.- ar · (43) 

~h~ .correction to the potential cp1 depends, by 
defm1tion, only on r •• Therefore, it yields the term 

(rp) dept apo 
-r- dr a£0 • (44) 

All the expressions entering into Eq. (25), after 
contraction to p r/r, have the form of derivatives 
with respect to r of the different expressions: 

Since P 0 does not depend on r, this equation 
can be integrated immediately, setting the arbi
trary additive function of E 0 and M2 equal to zero 
because of the condition at infinity. This inte
gration with respect to r is possible because of the 
choice of the independent variables E 1"2 d 
T 0 , v1 an r. 

hus, 

P + w dpo - Jl2cpo dpo 
1 Tl d£0 -- 1t d£0 (46) 

1 d3p [ d2 + 24 dEgo 2Eo dr~o + 2<po ~~o- ( ~~o y 
_ M2 .!.._ !!:_ ..!._ drpo J + _!_ d2 Po ( d 2cp0 + ~ drp0-) 

r dr r dr 8 d£2 dr2 r dr · 
0 

The other equation, which connects m and p 
• th P • ' Tl 1) IS e o1sson equatwn for the potential: 

(47) 
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Although the corrections to p 0 are large for E 0== 0, 
they enter integrally into the potential, and there
fore, the resultant addition to the potential is small. 

It is useful to carry out integration by parts in 
Eq. (47). In this case the terms which do not de
pend on angle acquire a factor of 47T, while the 
terms proportional to M2 gain the factor 47T(2/3) 
x r 2p 2 because M2 is proportional to the square 
of the sine ofthe angle between r and p. With the 
help of Eq. (40), the expression in the square 
brackets in Eq. (46), after integration over the 
angular variables, has the form 

~ (£ + tD ) ( d2~o + ~ d([lo \ - 47t (d([lo)2 . 
3 ° • 0 dr2 r dr ) dr 

It is easy to carry out integration over p if we 

make use of the definition of p0 in Eq. (34). 

Actually, we write y 2 ( E 0 + Cf!o) dE 0 in place 
ofp 2dp and make use of the fact that dp /dE 

0 0 
== - o ( E 0 ). The integrals of the second and third 
derivatives of p 0 are obtained with the aid of the 
well-known formula 

Substituting p 1 from (46) in Eq. (4 7), we get 

(49) 

+ 127t~~([JJ4Llcpo- ;o (~~o YJ· 
This is also the equation for the correction to the 
potential. Here the first component on the right 
takes exchange into account, and the second fol
lows from the addition to the classical Poisson 
bracket. If we substitute the expression Ll cp0 in the 
right side of Eq. (49), then we get the value 
( 8/ 97T 2 ) cp0 , which is nine times smaller than the 
exchange term. In numerical integration it is shown 
that the ratio of both corrections to the potential 
is of the same order. We now transform to the 
dimensionless Thomas-Fermi variables, which are 
based on m, e and h: 

(37t)'la X n2 . 
r = ~ z'ls me2 , 

Ze2 

)Do= ---;:-x; 

(50) 

Z 'l. y me4 

'Pl = (67tJ·I. xh2. 

Then the dimensionless potential in zero approxi
mation satisfies the well-known equation 

(51) 

and the dimensionless correction y is found from 
the linear inhomogeneous equation 

d2y 3 (x [ V-;r;-(d x \2] c ) -- -;- - y = 40v - - - -) . 52 
d x2 ~ x 1' x> dx x 

We note that the potential in zeroth approximation 
is proportional to 24/3, and in first approxinJation, 

it is proportional to Z 2 ; 3 . Conse;uently, the rela
tive order of the correction is z- 2 3 (the numeri
cal coefficient 40/(67T )413 differs but slightly 
from unity). 

4. INTEGRATION OFTHE EQUATION FOR THE 
CORRECTION TO THE POTENTIAL 

The boundary conditions for Eq. (51) are X ( 0) 
== 1, X ( oo) = 0, because the potential is purely 
Coulombic in the immediate vicinity of the nucleus, 
but at large distances from the nucleus, the po
tential falls more rapidly than Coulombic (due to 
electron screening). The condition at infinity for 
y is evidently y ( oo) = 0, and at zero, y ( 0) = 0, 
inasmuch as the value of the potential in the neigh
borhood of x == 0 is described by the function 
x(x ). 

On the other hand,Eq. (52) is invalid both in the 
immediate neighborhood of the nucleus and also at 
large distances from the nucleus. One can raise 
the question: is it valid to integrate Eq. (52) with 
the boundary conditions y ( 0) = y ( oo) = 0 if these 

conditions are applied outside the region of ap
plicability of the equation*? 

Let us first consider the solution for small val
ues of x, of the order of the radius of the K-shell. 
In the region of the K-shell, the quasiclassical 
approximation assumed in the work is known to be 
inapplicable. But the charge included in this 
shell is of the order of unity, so that its effect on 
the potential of the self-consistent field in the 
atom is of order 1/Z relative to the total potential. 

Further, the accuracy assumed by us is z- 2 I 3 

so that a correction of the order of l/Z ought to 
be neglected. Also, it is evident that z- 2 13 is the 
highest approximation compatible with the classi
cal approach to the problem. 

* This question was raised and answered for us by 
L. D. Landau. 
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Therefore, one does not integrate the "exact" 
equation, in which terms proportional to z-2 13 are 
considered on a par with the main term (as, for 
example, Jensen does 3 ). It suffices to integrate 
the equation for the first approximation (52) only 
once, as also the main equation (51), and for 
different atoms, to consider the dependence of the 
potential on Z only according to Eq. (50). 

We can estimate [directly, by Eq. (52)] the 
order of magnitude of those distances from the 
nucleus (on the side of small x ), where the cor
rection is comparable with the zeroth approxima
tion. A more suitable estimate can be obtained if 
we compare not the potentials but the fields which 
are produced from the given density distribution of 
electronic charge. We shall also make this com
parison. The function near the origin of the co
ordinates has the form X = l - 1.589 x + 4/3 x 3 I 2 , 

as is well known. The number one appearing in the 
first part corresponds to the potential of the 
nucleus, and is not of interest to us in the com
putation of the field. The field due to the elec
trons, in zeroth approximation, is 

T~e expressio_n y for very small x is easily ob
tamed by settmg X = l on the right-hand side of 
Eq. (52), which gives y = 4y-;;- or, in accord with 
Eq. (50), 

fl 4 Z' d 1 ' , l0 1 = --.- 1'-~ = 0.04Z l,x- !'. 
(6rr) /, dx Y x 

Comparing 2 0 and 2 1 , we see that 2 1 is of order 
of2owhen X. rv0.06T 213 ,r. rvo.mh2/Zme 2, 

m1n m1n 

i.e., rv 0.07 of the radius of the K-shell. 
In this way, extrapolating the boundary condi

tion for y to the point x= 0, we commit an error 
whose relative order is 1/Z, with a small numeri
cal coefficient. 

Now let us consider the applicability of the 
boundary conditi~n y = 0 for large x. As is well 
known, the asymptotic form of the solution of 
x(x) for large X is l44/x 3 • In practice, however, 
this form of the solution is not obtained. It is 
therefore appropriate to assume that the function 
X ( x) (for large x) is A 2 ( x) x- 3 , where A ( x) is 

a slowly changing function of x. Correspondingly, 
we determine the asymptotic solution of the homo

geneous equation 

We shall seek y 0 in the form 

y 0 = x A (x), neglecting the derivatives d A/ dx. 

Then, 

One sol uti on, y 0 1 , vanishes at infinity as xA 1, and 

the other solution, y 02 , goes to infinity as 
A2 

X . 

One can choose an arbitrary solution of the in
homogeneous equation (52) in the form of the 
quadrature of the right-hand side, with the help of 
the solutions y and y But the right side is 01 02. 
known to us, not for arbitrary values of x, but only 
for such x in which the correction is still small 
in comparison with the main solution. Let us as
sume that, beginning with each x = x and larger, 
the function on the right side of Eq. P52) is some 
unknown F ( x ). We shall show that the solution 
y ( x) for x < x 1 does not depend on this function 
F ( x) if y ( x 1 ) is sufficiently large that the solu
tion vanishing at infinity is already small. This 
means that we can set y ( oo) = 0 without making 
any error. 

We denote the known right side of Eq. (52) by 
f(x ). Then the solution for x < x 1 can be written 

in the following form: 

(53) 

X 

+ ~ f (x') (YoJ (x') Yo2 (x)- Yo1 (x) Yo2 (x')) dx', 
0 

if the solution y 02 is connected with y 01 by the 

well-known relation y 02 = y 01 fy~21 dx. There ex

ists a relation between the coefficients C 1 and 
C 2 that is determined from the boundary condition 
at zero. This dependence has the form C 2 = f3 C 1 , 

where the coefficient f3 is independent of the values 
x = x 1 chosen,and is not connected with the func

tion F (x ). 
For large x the sol uti on runs as 

Y (x) = C3Yot (x) + C4Yo2 (x) 
(54) 

X 

+ ~ F (x') (YoJ (x') Yo2 (x)- Yot (x) Yo2 (x')) dx'. 

In order that the solution remain finite at infinity, 
it is necessary to impose on C 3 the condition 
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00 

C~ = ~ F (x) Yo~ (x) dx. (55) 
x1 

The solutions of Eqs. (53) and (54) must join 
smoothly for x = x 1, i.e., the functions and their 
derivatives must be equal. This yields 

• 00 

C t = ~· f (x') Yo2 (x') dx' + ~ F (x') Yo~ (x') dx' (56) 
() x1 

But this also means that for large x 1 it is possible 
to set x 1 = oo, if only to provide that the function 
F ( x) does not increase to infinity, which is quite 
natural. But then the solution of Eq. (52) for 
x ,:S x 1 generally ceases to depend on the value of 
x 1 and on the unknown function F ( x ). Conse
quently, we can assurre that the condition 
y ( oo) = 0 applies in the region of applicability of 
Eq. (52). 

Equation (52) has been integrated numerically by 
the method of Numerov 11 • In this method a new un
known function y ( x) - ( a 2 /12) y" is chosen in 
place of the unknown function y ( x ). Here a is the 
interval in the numerical integration. The second 
derivative of the new unknown differs from the 
second difference by a quantity of sixth order rela
tive to a. Thanks to this method of Numerov, it 
was possible to integrate equations numerically, 
solved relative to the second derivative, by choos
ing a large interval. 

In order to satisfy the condition at infinity, we 
must proceed in the following fashion. We first 
determine by the method of numerical integration 
the solution of the homogeneous equation, which is 
equal to zero for x = 0; then, also by numerical 

!J(I) 

fl.!l2 
0 

-0.02 
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·£1.06 
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......... ....... 

J 4 J 5 7 X 

!lx 

!J, -f.-

integration, we find the similar solution of the 
inhomogeneous equation (52). The ratio of the 
two solutions tends toward a constant value for 
x = 0. Then, if we subtract from the solution of 
the inhomogeneous equation the solution of the 
homogeneous equation, multiplied by this constant 
ratio, we obtain a solution which satisfies both 
the houndarv conditions. 

For comparison with the calculations carried out 
by other authors, we have divided the right-hand 
side into two components: the purely "exchange" 
correction, equal to 36x, and the remainder, the 
"quantum" part, which is found in the present work. 
The corresponding components are labeled y A and 

y K' The curves YA and yK are plotted separately 

on the graph. As a consequence of the large 

numerical coefficient, y A dominates for all x; 

therefore, the results of Jensen are practically 
valid, hut only so long as the .exchange correction 
in them is small in comparison with the main term. 
The final condition of Jensen was not observed for 
large x. 

As far as the quantum correction is concerned, 
it is shown to be 9 times smaller than predicted 
by Weizsacker. We can therefore consider it as 
finally established that only the exchange correc
tion is appreciable in the Thomas-Fermi potential. 
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