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The collision between an electron and an arbitrary atom is considered, The wave function 
of the system "atom+ electron" with given spin is described by the coordinate q.nd spin 
functions of this system, The coordinate function of the system is constructed from the 
atomic and one-electron functions in such a way that it possesses in explicit form the cor
rect symmetry properties relative to a transposition of the arguments. A system of integra
differential equations, similar to the Fock self-consistent field equations have been obtained 
for the one-electron coordinate functions. These equations can be transformed into integral 
equations. The angular variables have been separated and integral equations have been 
obtained for the radial one-electron functions. The integral equations can be simplified 
if approximate atomic functions are used. The problem is reduced to a system of Volterra 
integral equations which are suitable both for general investigations and for computations. 
An analysis of the asymptotic expressions is carried out and formulas are derived for 
effective cross sections. 

INTRODUCTION in the antisymmetric case (parallel spins) for 

RECENT investigations (see, for example, Ref. 
l) have revealed the unsuitability of the Born 

approximation (and its modification which takes 

exchange into account--- the method of 13om

Oppenheimer) for calculation of collisions of 

13.5 ev is twice the theoretical limit. For the 
excitation of the 2 3 S level of helium at 22.5 ev the 
cross section computed according to Born-Oppen
heimer is l.l times the theoretical limit and ex
ceeds experimental values by a factor of 20. 

In the methods of l3orn and Born-Oppe.Rheimer, 
the interaction of the electron with the atom is 
considered weak, and therefore the wave function 
of the electron is taken in the form of a plane wave. 
Refinement of the methods of calculation is ob
tained by consideration of the perturbation of the 
electronic wave function by the strong field of the 
atom and by exchange interaction. 

slow electrons with atoms. Especially poor re
sults are obtained in the calculation of the effec
tive cross section for excitation near the thresh
old in those cases in which exchange effects 
play a role. 

In a number of cases the effective excitation 

cross section calculated according to the Born
Oppenheimer method exceeds the theoretical 
limit imposed by conservation of the number of 
particles. For example, the effective excitation 
cross section of the 25 level of the hydrogen atom 

Representing the wave function of the system 
"atom+ electron" in the form of a properly sym
metrized sum of products of atomic and one
electron functions, and carrying out the computa-
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tions based on the use of the Schrodinger equa
tion, one can obtain a system of integra-differ
ential equations for the one-electron functions. 
These equations, similar to the self-consistent 
field equations of V. A. F ock, describe the inter

action of the electron with the atom. The simplest 
equations of such form for the elastic collisions 

of electrons with atoms of hydrogen and helium 
were first considered by Morse and Ellis 2 and 
were integrated numerically. For excitation of 
the 25 level of the hydrogen J and of the 215 and 
235 levels of the helium atom, such equations 
were considered in the researches of Massey and 
Erskine 3 and Massey and Moiseiwitsch 4 which 
were devoted to the application of variational 
methods to collision problems. 

In 1953 it was shown by the author 5 that the 
integra-differential equations of the type obtained 
in Refs. 2 and 3 could be transformed into a sys
tem of Volterra integral equations and a system 
of algebraic equations for certain constants. The 
integral equations to which the problem reduces 
are suitable both for general investigations and 
for computations. 

In the present work we consider the general 
problem of the collision of an electron with an 
arbitrary atom or ion. An expression for the 
coordinate wave function of the system "elec
tron + atom" is constructed from atomic functions 
and one-electron functions which possesses in 
explicit form the appropriate properties of sym
metry relative to a transposition of arguments. In 
this case some results of F ock 6 are used that 
are concerned with the waye functions of many
electron systems. Integra-differential equations 
are obtained for one-electron functions. The po
tential energy of interaction of the electron with 
the atom and the exchange operator are expressed 
by quantities which are constructed from atomic 
functions according to the type of the density 
matrix*. Integra-differential equations are 
transformed into integral equations. Separation 
of angular quantities is carried out and integral 
equations for the radial functions are obtained. 

In practice, the atomic wave functions are ex
pressed approximately in the calculations in the 

* The general equations for the collision of electrons 
with an atom were also considered by Seaton 7. How

ever, Seaton began from a wave function system in 
which the spin and coordinate variables were not 

separated; therefore, his equations have a symbolic 
character, 

form of a combination of products of one-electron 
functions. If this approximation is used, then 
the equations for the radial functions reduce to a 
system of integral equations of the Volterra type 
and to a system of algebraic equations. 

1. THE WAVE FUNCTION OF THE SYSTEM 
"ATOM+ ELECTRON" 

Let us consider the wave function of the N-elec
tron system <l>(r 1 a 1 , ... , rN aN). It must be 

antisymmetric relative to a permutation of any 
pair (r., a.) and (r., a.). Neglecting spin-orbit 

' ' J J 
interaction, we can subject <1> to the condition that 
it be an eigenfunction of the square of the spin 

(1.1) 

(fr = 1 ). As Fock6 has pointed out, the wave func
tion <P satisfying (1.1) can be chosen from the co

ordinate function \)J ( r 1 ... rk IrK +I ... rN ), 
where 

(1.2) 

and the spin function x<al .. 0 ak I ak+l 0 • 0 aN) 

which possess definite properties of symmetry 
relative to permutation of the arguments. (In 
what follows, we shall write 

'¥(I. · .k / k + 1. .. N)andx (I. . . k I k + 1. . . N) 

in place of W(r 1 .•. rk I rk+l ... rN) and 

x(al. 0 0 ak lak+l 0 0 • aN), or even w, X where 

these would not lead to misunderstanding.) 

The function \)J is antisymmetric relative to a 
permutation of arguments up to or after the verti
cal bar; this can be described with the help of the 
permutation operator P .. in the form 

'J 

( 1 + P ii) 'l" = 0; i, j < k or i, j > k. ( l. 3) 

Moreover, W ( 1 ... k I k + 1 ... N) possesses the 
property of cyclic symmetry 

N 

(1- ~ pkj)'¥=0. (1.4) 
i=k+l 

The function X is symmetric relative to a permu
tation of arguments up to or after the vertical 
bar: 

(1 -Pi!) X= 0, i, J.<k t" J.>k . or , . (1.5) 
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Following Fock 6 , we construct the expression 

4l = [0' N!k)!k!r (1.6) 

where A1 ... AN is a set of N different numbers 

from the series l ... N and P is the parity of the 
permutation(! 2 ... N ) . 

A1A2 .. . AN 

By virtue of the properties (1.3)-(1.5) and the 
relations (l. 2), the function (1.6) satisfies the re

lation (l.l) and possesses the necessary asym
metry property relative to the permutation of 
( r., a.) and ( r., a.). The coefficient of the sum 
. ' ' 1 1 

in Eq. (1.6) is introduced so that, in the normali-
zation of'¥ and X to unity, <D will also be normal

ized to unity. 
If we choose X in the form 

k+l f 

k+2 2 

n-k 

k 

n 

k 

where u. = o 1 , {3=8 _1 a, a, 
then <D will be the eig
enfunctions of the op
eratorS which corre-z 
spond to the eigenvalue 
s (i.e., the spin of the 
system is directed along 
the z axis). The func
tion 'II which possesses 
the properties (1.3) and 
(1.4) can be obtained by 
subjecting an arbitrary 
function of N arguments 
to symmetrization ac-
cording to the scheme of 

Young pictured in the Figure( Landau and Lif
shitz8 ), i.e., we first carry out symmetrization over 
the variables entering into a row and then alterna
tion over the variables entering into the columns*. 
We shall denote such a scheme by the symbol ( k; 
N- K). 

As an illustration, we consider the example of a 

* This circumstance was brought out as a result of 
discussions with Iu. N. Demkov. 

function of three variables, symmetrized according 
to the scheme ( l; 2 ). The scheme ( l; 2) corre
sponds to the action of the operator ( l - P 23 ) 

( l + P 12 ). It is evident that by using such an 
operator, we obtain a function which is antisym
metric relative to the permutation of the indices 2 
and 3. It is not difficult to prove further that, using 
the operator ( l - P 12 - P 13) ( l- P23)( l + P 12 ) on 

an arbitrary function of three variables we obtain 
zero. Thus the function obtained as a result of sym
metrization according to the scheme (l; 2) actually 
possesses the properties of symmetry which ought 
to be had by 'II ( ll 23 ) . 

We return to the problem of interest to us, namely, 
the construction of a coordinate function system 
"atom + electron" from atomic and one-electron 
coordinate functions. For this purpose we con
sider the particular case 'II ( l ... k I k + l. .. n + l) 
which is formed from the product of the functions 
if ( l. .. j I j + l. .. n) and F ( n + l ). 

We note that in the expression for 'II there can 
enter only two types of function if: 

~1 = ~ (1. . . k I k + 1. . . n), (1.8) 

of2 = ~ (1 . .. k- 1 / k . .. n). 

This follows from consideration of the Young 
scheme. Actually, one can obtain the scheme 
( k; n - k + l) by adding one cell either in the 
second column of the scheme ( k; n - k) or in the 
first column of the scheme ( k - l; n - k + l ). 

The same result follows from the rule for the 
addition of momenta. Actually, for a given square 
of the spin moment of the ( n + l )-electron system, 
s ( s + l ), there are two possible states of the n

electron system:s 1 = s - 7:1 and s 2 = s + 7:1. In the 

first case, in accord with (1.2), j 1 = Ytn- ( s- 7:1), 
in the second, j 2 = Ytn - ( s + 7:1 ). Inasmuch as 

k = J-f(n + l)- s, then ji = k, j 2 = k- l. The ex-

pression for 'II, which consists of the products 

if 1F and if 2F, which satisfy the conditions (l. 3) 

and ( 1.4) ( for f\i = n + l), can be got by carrying 
out. symmetrization of these products according to 
the Young scheme ( k; n - k + l) and making use 
of the fact that if 1 and if 2 were already symmetrized 

according to the schemes ( k; n - k) and ( k _ l; 
n- k + l ). 

However, this leads to cumbersome calculations· 
therefore, we proceed otherwise: we set up the ' 
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expressions* 

n+1 
'Fl = ~ a;P;, n+11jir(l. . . k I k + 1. . . n) (1.9) 

i~k+l 

k n+1 
·qr2 = ~ ~ bt. ;Pt. kP;, n+1 

f=l i=lt 

X F (n + 1); 

(1.10) 

•.u (1. .. k-1jk ... n)F(n+1) 
XT2 

and we detem1ine the coefficients a. and bt . so 
' . ' 

that 'I' 1 and 'I' 2 satisfy Eqs. (1.3) and (1.4). 

We note that all the calculations necessary for 
the determination of a. and b . can be put in com-

z. t, t 

pact form if we make use of the "permutation rela
tions" 

(l.ll) 

We shall not carry out the calculations here, but 
shall at once write the result: 

n ' 

On the basis of the result (1.12) we now construct 
the coordinate function of the system "atom + elec-
tron." Let 1/J A 1 and 1/J A 2 be atomic coordinate 

functions; the indices A show the value of the 
energy, the orbital momentum and its projection on 
the z axis. (l) and (2) have the same meaning as 

above. We can then write 

'¥ =~(1- .± Pi,n+1)1]iA1FA1 
i=k+l 

k-1 n 

+ ~(1- 2} Pt,k) (1- ); 
A 1=1 i=k+l 

(1.13) 

We note that in this case, if 1/J A 1 , 2 are ex

pressed approximately by the product of one-elec
tron functions (or are themselves one-electron 
functions) we can carry out the transformation 

(1.14) 

'¥1 = (1- ] P;, n+I}'frF, (1.12) in (1.13), which does not change 'I' essentially. 
i=k+l 

k-1 n 

1f'z=(1-~ Pt.k) (1- ~ P;,n+1 
1=1 i=k+1 

+ (n - 2k + 2) Pk, n+I) ~ji2 F. 
It is shown in Appendix i that (1.12) satisfy the 

conditions (1.3)- (1.4). From (1.12), in particular· 
for n = 1, we get 

'¥ (/ 12) = ~ ( 1) F (2) - ~ (2) F ( 1), 

'¥ (lj2) = ~ (1) F (2) + ~ (2) F (1), 

for n = 2 

(l.12a) 

(l.12b) 

'Fr( 1j23) = ~ (112) F (3)- ~ (1 i 3) F (2),(l.l2c) 

'¥2 (1 j23) = ~ (j 1 2) F (3) 

- 'f (I 13) F (2) + 2·f (13 2) F (1). 

* It is understood that application of the permutation 
operator to the product of two functions obeys the rule 
pab (fg) = (Pabf)(Pabg), 

Thus, for 'I' ( \12 ), 

( 1.15) 

where BAA , are constants which satisfy the condi

tion BAA , = B A , A but are otherwise arbitrary. For 

'I' ( 1\ 2) ,fA also has the form (1.15), but the con

stants BAA , will satisfy the condition BAA , 

=-BA'A· 

If, in the expression for 'l' ( 1\ 23) we take 1/J A 1 

and 1/J A 2 in the form 

then 

~Al = ~(CAA'VA' + DAA'WA'), (1.17) 
A' 

1 
~A2 =3 ~(DA'AWA' -CAA,VA'), 

A' 
where C AA , and D A A , are arbitrary constants. 

2. EQUATIONS FOR THE FUNCTIONS FAa 

To derive the equations determining the functions 
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FA a' we shall start out with the equation 

(H-E)'¥=0. (2.1) 

Multiplying (2.1) by tfAadT, where a= 1, 2; dT 

= dr1 , .. . drn' and integrating, we get 

~Y~a (H-E) 'I! d-e= 0. (2.2) 

If \II is expressed approximately by a finite number 
of atomic functions, so that the number totaled in 
the sum (1.13) is finite, then (2.1) is not satisfied. 
In this case we shall consider that \II no longer 
satisfies (2.1), hut satisfies Eq. (2.2) as before. 

The energy operator H has the form (in atomic 
units) 

Here H 0 is the energy operator of the n-electron 
system; U is the interaction operator of the ( n + 1 )
electron with the n-electron system and with the 
nucleus, and is defined by the expression 

U = - _z_ + ~1 1 . (2.4) 
rn+t LJ lrntl-ri I 

t=l 

We substitute (1.13), (2.3) and (2.4) in (2.2). We 
note that the functions tjJ A a satisfy the equation 

(2.5) 

and the normalization condition 

(2.6) 

Carrying out a transformation based on the use of 
the symmetry properties of tjJ A a' we obtain the 
following system of equations: 

(~ + k~a) FAa (r) = 2 ~ U AA'aF A'a (2.7) 
A' 

+ ~ JlAA'aa' [F A'a' (r')]. 
A' a 

Here U AA 'a = JtfA. aUtfl A 'adT is the matrix of the 

potential energy of interaction: k~a = 2(E-EA); 
~is the exchange operator: 

JlAA'aa' {F A'a' (rn+t)J (2.8) 

= ~ Y~2 (Paa'Pt,n-11 -f- qaa'Pn.ntd [~ 

+ k~'a'- 2U] YA'a'F A'a' d-e, 

where Paa, and qaa, are equal to 

Pn = P12 = P21 = 0; (2.9) 

P22 = (k- 1) (n- 2k + 3) 1 (n- 2k + 2); 

qll = (n- k); ql2 = k (n- k) (n- 2k + 3); 

(/21 = (n- k) (n- k + 1) I (n- 2k + 2); 

q22 = - (n- k + 1) I (n- 2k + 2). 

Taking into account the explicit expression (2.4) 
for U, making use of the symmetry proferties of 
tjJ A a and the self-conjugate property o the operator 

Ll, we can put the potential energy matrix and the 
exchange operator in the form 

(2.10) 

JlAA'aa' [F A'a' (r')] 
(2.11) 

= ~ W AA'aa' (r', r) FA' a' (r') dr', 

W AA'aa' (r', r) 
(2.12) 

= (~' + k2 + 2z 2 ) ( , ) A'a' 7- I r _ r' J PAA'aa' r ,r 

--2~PAA'aa'(r", r', r)IJr'-r"Jdr". 

PAA 'a(r'), PAA 'aa ,(r', r), PAA 'aa ,(r", r', r) are 

expressions composed according to the type of the 
density matrix and having a rather cumbersome 
form. The explicit form is derived in Appendix II. 
Making use of the expression (2.11) for the ex
change operator, and setting 

2U AA'a = V AA'a• (2.13) 

we get Eq. (2.10) in the form 

(Ll + k~a) FAa= ~ V AA'aF A'a (2.14) 
A' 

+ ~ ~ W AA'all' (r', r) FA' a' (r') dr'. 
A'a' 

3. TRANSFORMATION TO INTEGRAL EQUATIONS. 
SEPARATION OF THE ANGULAR VARIABLES 

We transform the set of integro-differential equa
tions (2.14) to a set of integral equations. For this 
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purpose, in the case of the collision of an elec- , 
tron with a neutral atom we make use of the Green s 

function 
cxp (ik Aa J r- r' J) 

GAa(r, r') = 4rrjr-r'J , 

which satisfies the equation 

(3. + k~a) GAa (r, r') = --0 (r- r'). 

In the case of the collision of an electron with 
an ion of charge z 0 , we must choose a Green's 
function which possesses the specific asymp
toticity of the wave functions of the continuous 
spectrum of the Coulomb field. This condition is 
satisfied by G A a wh'ich is defined by the equation 

(L:l + k~a + Zo/ r) GAa (r, r') =- 0 (r- r'). 

In order to consider both cases at once, we write 

(Ll + k~a- V0 (r)) GAa (r, r') =- o (r- r');(3.1) 

V 0 = 0 or -z/r. 
We are interested in the FA a which possesses 

as an asymptotic expression (for large r) 

(3.2) 

or, in the case of a collision with an ion, 

FAa~ exp i [kAaf + jln (kAaf- kAar)] (3.3) 

+ qAar-1 exp i (kAar + jJO 2kAar); 

I= Zo/ kAa· 

Taking (2.14) and (3.2)-(3.3) into account, we 
get 

FAa (r) = tpAa (r) OAA,Oaa, 

-] \[VAA'a (r')- Vo (r') oAA'l 
A'J 

X G Aa (r, r') F A'a (r') dr' 

- 2} ~GAa (r, r') dr' 
A'a' 

(3.4) 

X ~ W AA'aa' (r", r') F A'a' (r") dr", 

where Cf'A a is a regular solution of the equation 

Llq;>Aa + (k~a- Vo (r)) CfAa = 0. (3.5) 

For V 0 = 0, 

tpAa = exp (ikAar). (3.6) 

For V 0 =- z/r, Cf'Aa has the asymptotic form 

(3. 7) 

q~02 is the scattering amplitude in a Coulomb 

field. 

Changing the order of integration in the latter 
integral of Eq. (3.4), and assuming 

KAA'aa' (r, r') (3.8) 

=- GAa (r, r') [VAA'a (r')- V0 (r') oAA'1 Oaa' 

-~GAa(r, r")WAA'aa'(r', r")dr", 

we get a system of integral equations 

FAa (r) = CfAa (r) OAA,Oaa, (3.9) 

+ ] ~ KAA'aa' (r, r') F A'a' (r') dr'. 
A'a' 

We go on to the spherical system of coordinates 
and carry out a separation of the angular variables. 
We shall assume that the center of the coordinate 
system lies in the nucleus, while the Z axis is 
directed along the electron stream, incident on the 

atom. We expand FA a' cpA a and G A a in the spheri-

cal harmonics Y1m ( e, cp), normalized to unity, 

FAa= ]azr-1{Aaz(r) Yzm(B, cp), 
l 

a1 = [4rr (2! + l)]'l,iZ; 

CfAa (r) = ~azr-IuAaZ (r) Yz.o (f!). 
l 

(3.10) 

(3.11) 

In the expansion of (3.10), the summation is not 
carried out over m. By virtue of·tbe conservation 
of the Z component of the momentum of the system 
''atom + electron", the dependence of FA a on the 

angle cp is determined by the dependence of tjJ A a 

on cp implicit in the index A. The functions uAal 

satisfy the equation 
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dZuAal+(k2 _l(l+il_y\JU =O (3.12) dr2 Aa r2 o Aa l , 

whereuAal(O)==O. ForV0 ==0: 

UAal = ("-r I 2kAa)'I•Jl+'l• (kAar). 

For V 0 ==- z /r: ,- 1u A al is a regular radial function 

of the Coulomb field. Further, 

GAa (r, r') (3 .13) 

= ~(rr'f1rAal(r, r')Ylm(B, cp)Y;m(B', cp'), 
lm 

r A al is a one-dimensional Green's function which 

satisfies the equation 

( d 2 2 1 (l + 1) ) 
drz+kAa---r2- -Vo rAaz(r, r') (3.14) 

= -o (r- r'). 

As is well known, this function can be expressed 
by u A al and the second independent solution of 

Eq. (3.12), which we denote by vAal: 

(3.15) 

r Aai(r, r') = {- UAal (r) VAa!(r') I w for r <, r' 
- UAal (r') VAal (r) lw for r >- r' 

w l u A al; vAal l is· the Wronski determinant, 

Corresponding to the asymptotic expressions 
(3.2)-(3 .3), vAal ought to have the form of a diverg-

ing wave for r-> oo. We choose vAal so that w == l 
For V 0 == 0, we have 

·-1 ( 1t k )'I•HCl) VAal= t 2 Aaf l+'l• (kAar). 

We introduce the notation 

Vww' (r') (3.16) 

W "'"'' (r', r") = r' r" ~ Y;m (B''cp") 

X W AA'aa' (r', r") Y l'm' (8' cp') dQ' dQ", 

where cu == ( Aal) . Because of the presence of the 

term I r- r'l-l in (2.12), If ,(r, r') will have a 
(U(U 

different form for r < r' and r > r '. In order to con
sider this circumst:nce, we sh~ll write W ( l) ,(r' r") 

,(U(U ' 

for r' < r " and W ( 2 ) ,( r ', r ") for r '> " F th == cucu = r • ur er, 
let us set 

Sww' (r, f 1) = [vw (r) Uw (r') (3.17} 

- Vw (r') Ucu (r)] [V "'"'' (r')- V0 (r') Owcu'] 

r 

+ ~ [Vw (r) Uw (r") - Vw (r") Uw (r)] 
r' 

X [W'2~, (r', r") - W~2~, (r', r")] dr"; 

Trow'(r, r') 
(3 .18) 

r 

=~ [vw(r)uw(r")-vw(r")ucu(r)]W~~~(r', r")dr", 
0 

m 
(3.19) 

Cw = OAA,Oaa, + ~ ~ N ww' (r') fw (r') dr', 
"'' 0 

N "'"'' (r') = Vw (r') [V "'"'' (r')- V0 (r') Owcu'] 

m 

+ ~ www'(r', r")vw(r")dr". 
0 

(We note that Scucu, and T cucu, do not change under 
the transformation 

lVhere ,\ and 11 are constants.) 
With the help of (3.17)-(3.19) we obtain* 

(3.20) 

r 

+ ~~ Sww'(r, r')fw'(r')dr' 
w' 0 

m 

+~ ~Tww'(r, r')fw'(r')dr'. 
w' 0 

* The integrals entering into (3.17)-(3.19) converge. 
The convergence is guaranteed by the behavior of V 0 , 

V (U(U' and W (U(U' for large values of their arguments, 
and also by the fact the expressions of the type 

V (U(U'(r)v (r)fcu(r) and W ,(r', r)v (r) are finite 
(U (U(U (U 

for r-> 0 • 
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Equation (3.20) can be simplified in this case if 
the wave functions of the atom, tj; A a' are approxi-

mated by one-electron wave functions. Then W ww, 

will be expressed in the form of the sum of products 
of functions of r' and functions of r". Consequently, 
T , will have the form 

(j)(j) 

T "''"' (r, r') = ~ Rww'i (r) Q"'"''i (r'). (3.21) 
i 

For simplification of the calculation, we consider 
the case in which only one term entersintothesumover 
i in (3.21). Generalization to the case of several 
terms is trivial. 

Substituting Eq. (3.21) in Eq. (3.20), and assum-
ing 

"' 
c '- \ Q (' ') "'"'- J "'"'' r fw,(r')dr', 

0 

we put Eq. (3.20) in the form 

fw (r) = CwUw (r) + ~Cww'Rww' (r) 
"'' r 

+ ~ ~ Sww' (r, r') fw' (r') dr'. 
w' 0 

(3.22) 

(3.23) 

We now pass over from unknown f to the new un
known x by means of a linear transformation 

w' (i)'CU" 

Substituting (3. 23) into (3.24), we get a system of 
Volterra integral equations 

r 

+ ~ ~ Sww"' (r, r') Xw'"w'w" (r') dr', 
{I)"' 0 

r 

Xww' = Uwflww' + ~ ~ Sww' (r, r')xw'w (r')dr'. 
w" 0 

As is seen from (3.25), the system of equations 
for xww, and xww 'w, is developed in a series of 

independent subsystems . 
If the system of equations (3.25) is solved, then 

we can determine the unknown constants c and 
(j) 

cww'· For this purpose, we must substitute the 

values of xww, and xww 'w, which have been 

found, in Eq. (3.24), and substitute the resultant 

expression in (3.19) and (3.22). A system of alge
braic equations in c w and c ww, is obtained: 

~Cw"Lww'co" (3.26) 
w" 

~ Cw" [Mww'- Dw"w] 
w" 

+ ~ Cw"w"'Mww'w"' + DAA,Daa, = 0; 
c.u"w"' 

where 

00 

Lww'w' = ~ Qww'Xw'w'dr; 
0 

(3.27) 

00 
~ 

Lwru'CJl"c.u"' = ~ QCiJCJ),X(J)'ru"cu"'dr; 
0 

00 

Meow" = ~ ~ N ww'Xw'w"dr; 
w' 0 

00 

Mww"CJl'" = ~r N x d 2.J J "'"'' w'w"w"' r. 
w' 0 

We note that some of the quantities c and c , 
(j) (j)(j) 

can be equated to zero in certain cases. Actually, 
at the end of Sec. 1, it was pointed out that in the 
use of approximate expressions of tj; A a in terms of 

one-electron functions, we can change FA a' leav

ing unchanged the wave function of the entire sys
tem. This possibility can be used to impose on f w 
the additional condition of orthogonality to some 

of the N ww, or the Qww '· The number of these 

additional conditions depends on the spin of the 
system and also on the number of different one
electron functions used in the calculation. 

4. ASYMPTOTIC EXPRESSIONS. EFFECTIVE CROSS 
SECTIONS. 

Let us consider the asymptotic expressions for 
FA a [ (3.2) and (3.3)]. We represent qA a in the 
form 

qAa=]i-1 azqAazYzm(8,rp). (4.1) 
l 

The qmntities qA al can be expressed by in

tegrals containing the functions x ww, and x ww, w ". 
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For this purpose we consider the integral equations 
(3.20). Taking into account (3.17)-(319.) and (3.23), 
we can write, for large r: 

where 
00 

B.,= ~Cw• ~ ~cf)ww•Xw'w"dr' 
Ct>" U W' 

(4.3) 

00 

+ ~ Cw'w'" ~ ~ rf)ww' Xw'w".,"' dr'; 
CJ:JI'w"' 0 w' 

00 

+ ~ Uw (r") W "'"'' (r', r") dr". 
0 

Fort' 0 = 0, the asymptotic expressions for uw and 

v w have the form: 

Uw ~ k'A./i sin (kAaf -/'IT 1 2), 

Vw ~- exp i (kAaf -/;c I 2). 
Consequently, 

(4.4) 

(4.5) 

For V 0 = - z 0 / r, the asymptotic expressions for 

uw and v w will be 

k-1 i'l)w • (k [rt Uw~ Aae Slfl Aar- 2 (4.6) 

+ 'l/w + r In 2 kAaf) ' 

Vw---- exp i ( kAar- t; + r In 2kAaf) ' 

where Tfw = arg r(l + 1- iy). Then we get for 

qw 

(4.7) 

We now return to the asymptotic behavior of the 
wave function of the system "electron + atom", 
when any of the large rare large, for example, 

rn+1' 

We substitute (1.13) in (1.6) and make use of 
Eq. (1.7) for X. (Consequently, we consider the 
spin of the system directed along z. ) In view of 
the presence of transformation operators, there 
enter into the expression for <ll [in addition to 

terms if A a FA a ( rn+ 1 )] terms in which the argu

m~nt rn+ 1 enters into !fAa' If we now let rn+l 

--> oo, then the terms, in which the if A a belonging to 

the discrete spectrum contain r n+ 1, disappear. 

Similar terms, in which if A a belong to a continu

ous spectrum, remain finite but will play no role 
whatever in the following. Therefore, considering 
<ll for large rn+ 1, we take into consideration only 

those terms in which rn+ 1 enters into FAa' 

Carrying out some transformations and neglect
ing the factor in front of <D, which is not essential 
in what follows, we get 

<D ~~<!>Alp A1 (rn+l) IX.nH 
A 

+ k112 ~ <D~,F A, (rn+l) IX.n+l 
A 

- (n - 2k + 2) k 11
' (n- k + 1 )-1

/, 

(4.9) 

X~ <DA2F A2 (rnH) ~n+1· 
A 

Here <ll A 1 is the atomic wave function with spin 

s - %;, composed , according to ( 1.6), of if A 1 and 

X= fJ1 · · · f3k a.k+ 1 · · .l).n' <ll A 2 is the atomic 

wave function with spin s + %;, composed, by (1.6), 

of if A 2 and X= {3 1 ... f3k. 1 a.k . .. v..n, <ll~ 2 is com

posed also of if A 2 , but X in this case has the form 

X= (n -k + 1)-11' (4.10) 

n 

X ( 1 + ~ Pk,i) ~1 ••• ~kcx.k+1 . · . cx.n. 
J=k+l 

<D~ 2 corresponds to the spin s + %;, but the value 

of the projection of the spin on the Z axis for this 
function is equal not to s + %; but to s - %;. Sub
stituting the asymptotic expressions (3.2) or (3.3) 
for FA a in (4.9), calculating the vector current and 

summing over the spins, we can obtain, in the 
usual way, the expressions for the effective cross 
sections. 

We now consider, as an example, the case of the 
collision of an electron with an atom which has 
spin 0 before collision. 

Taking (1.2) into consideration, and omitting the 
index n + 1, we get from (4.9): 
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<D~<DA .. exp(ikA,1r)<X (4.11) 

+ ~ <D AlqA1r-1 exp (ikA~r) <X 
A 

+ ( T-)"' ~ <D~2qA2r-1exp (ikA2r) <X-2(-n -)'1• 
A n+2 

X~ <D A2qA2r-1exp (ikA2r) ~. 
A 

Hence, the differential effective cross sc ction of 
collision with no change in the spin of the atom is 

dcrA1,A,1 = (kAI I kA,1) I qA1 j2 dO, (4.12) 

hut with a change in the value of the spin of the 
atom, 

daA2,A,1 = (kAd kA,1) [n I 2 

+ 4n I (n + 2)] j q A2 j2 dO. 
If the atom had spin differing from zero before the 
collision, say, s 0 , then there would be two possi
ble values of the spin of the system: s == s 0 + ~ 

and s == s 0 - ~. Therefore, there are two different 
problems. In the first of these the initial state of 
the atom is described by the functions <P A 0 1 , in 

the other, by the functions <P A 02 • 

In order to obtain the observed cross section, we 
must carry out an averaging over the spins. 

I express my gratitude for discussions to V. A. 
Fock and lu. N. Demkov. 

APPENDIX I 

We show that the expressions 'P and 'P satisfy 
l 2 

the conditions (1.3)-(1.4). Let us first consider 'P 1 • 

l. Condition of antisymmetry up to the vertical 
bar is evidently satisfied, inasmuch as the argu
ments in 'P 1 and If; 1 are identical up to the bar. 

2. Antisymmetry after the bar. We apply the 
operator ( 1 + P . . ). Making use of Eq. (l.ll), we 

'•' get 

(1- ~ Pz,rz+I)(l -f-P;,i)•hF for i,j=f=n+ I, l " 
(1) 

(I + Pz,J) '¥1 = l=k+1 
- ~ Pi,rz+I (I+ P;,z) •hF for j = n + l, 

l i~i 

which vanishes since ( 1 + P i,l) If; 1 = 0. 

3. Condition of cyclic symmetry. Making use of 
(l.ll), we can show that 

rz+1 rz , 

(1- ~ Pk,i) (1- ~ Pi,rz+1) 
i~k+l i=k+1 

(2) 

inasmuch as 

(1-. ~ lk,i)~1 = 0, 
t-k+1 

consequently, 
"+1 

( 1 ~ Pk,i) '¥1 = 0. 
i=k+l 

Let us now consider 'P 2 • 

l. Antisymmetry after the vertical bar. 

- ~ Pz,rz+di + P;,z)] o!f2F for j = n + 1, 
~~ l 

which vanishes, since 

(1 + P;,J) •h = (1 + P;,k) ~2 = 0. 

(1 -f-P;,k)'¥2=- ~ Pt,k(1- ~Pz,rz+1 
f+ i i 

-f- (n- 2k -f- 2) Pk,rz+1 ) (1 -f- Pt,i) ~J. 
which vanishes, since ( 1 + P . ) •1•2 == 0. t, z. 'jJ 

(3) 

(4) 

2. Antisymmetry up to the bar. Fori, j =f. k, 
the condition is evidently satisfied. For j == k, 3. Condition of cyclic symmetry. Making use of 
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the properties of 1/J 2 , we get, after some transforma
tions, 

n+1 

APPENDIX II 

We derive expressions for the quantities 

319 

(1- ~ Pk,i)'¥2 (5) PAA 'a (r'), PAA 'aa ,(r', r) and PAA 'aa ,(r", r', r). 
j=k+1 

=(1 -L ± P1.n+1)[(1- ± Pk,J) 
i=k i=kH 

In order to write down these expressions in the 
most compact form, we introduce the notation for 

the integral of the product 1/J;t a 1/J A 'a, over all vari

ables except certain exclusions. For example, the 

integral of the product 1/J;t a 1/J A 'a, over all vari-

k-1 n 

- ~ Pt,k(1- ~ Pt,i)-(n-2k+2) J~2F. 
f=1 i=k+1 

Furthermore, we can show that by virtue of the 
properties of !f 2 , the equality 

ables except ri' entering into 1/J~ a' and ri entering 

into 1/J A 'a,, we denote by the symbol 

[ (I - ± Pk,i) (6) 
i=k+1 

(r i)Aa (r i )A' a' 

k-1 n 

- ~ Pt,k (I - ~ Pt,i)] ~2 = (n- 2k + 2) ~2 
f=l i=k+1 

= ~ ~~a~A'a' dr1 ... dri-1dri+l· .. dri-ldri+l. ·. drn. 

If, after integration, ri is replaced by r, and r; by 

r ', then we can describe. this case by exists. Consequently, 
n+1 

(l- ~ Pk,i) '¥2 = 0. 
i=k+l 

( r ) ( r' ) . 
ri Aa\ri A'a' 

The expressions of interest to us have the form: 

;, ' [ k ( r'' r' \ ( r'' r ) + ( - k - I ) 
PAA'n_(r,r,r)=qn ri rn)A1\ri rn A'l n 

( r" r') ( r" 
PAA'12(r",r',r)=q12[(k--l) r 1 rn A1 r1 

( r'' r' ) ( r" r ) J + (n-k-l) rn_ 1 rn A1 rn-1 rn A'2 ; 

, , [ ( r'' r') ( r" r \ PAA'21 (r , r , r) = q21 (k- I) ; 
r1 r n A2 r1 r n • A'l 

+ ( rr'k' r') ( r" r \ + (n _ k _ I) ( r" r' ) ( r'' r ) J 
rn A2 rk rn)A, rn-1 rn A2 rn-1 rn A'l; 

PAA'22 (r"r'r) = q22 [ (k- I) ( ~: ;~ ) A1 ( ~~ ;n) A'2 

+ (n -.~) ( r'' r' ) ( r" r ) J 
rn-1 'n A2' 'n-1 rn A'2 

[(k 2)(r' r") ( r r") +(n-k+ I)(r' r") ( r r") ] + P22 ~ rl r2 A2 rl r2 'A'2 rl r n A2 rl r n A'2 
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The yields of the reactions In 115 ( y, y')In llSm and In 115 ( y, 2n) In 113m and the yield of 

neutrons accompanying the photodisintegration of indium were measured at various maximum 
energies of x-rays from 5 to 27 mev, Cross sections were calculated by the photon difference 
method. 

THE yield of the reaction ln 115 (y, y:)ln115m at 

various maximum x-ray energies Em ax from 5 

to 27 mev was measured on the 30 mev synchrotron. 
The number of isomeric states of In 115m, formed 

after the irradiation, was measured by a scintilla

tion counter which registers the y-radiation emitted 
during the transition from the metastable level to 
the ground level (hv = 335 kev, T = 4.5 hours). 

If the conversion coefficient is not very large, 
this method of registration of metastable states 

seems to be more effective than the measurement 
of the induced activity by means of soft conversion 

electrons, since it makes possible a considerable 
increase in the number of counts at the expense of 
increasing the effective thickness of the sample, 
and simplifies the corrections for absorption and 
scattering of the radiation which is being regis
tered. The photo-excitation cross sections of the 
metastable state of In 115m so obtained give a 
lower bound for the cross section of the reaction 
Inll5(y, y'). 

In reducing the y-decay curves of the activity 
induced in the indium sample, the yield curve of the 

reaction In 115 ( y, 2n) In 113m was also obtained. 

For simultaneous comparison of radiative and 
neutron width at various energies of x-rays, neu

tron fields during photodisintegration of indi urn 
were measured. 

l. YIELD CURVE OF THE REACTION In 115(y,y')In 115m 

The sample of indium (95.8% ln 115 ; 4.2% ln 113), 

2.55 gm/ cm 2 thick, was irradiated at a distance of 
60 em from the target of the synchrotron. In order 
to decrease the y-activity arising as a result of 
capture of slow neutrons [ In 115 ( n, y )In 116m, 

T = 54 min], the sample of indium was placed dur
ing irradiation in a cadmium case (wall thickness 
0.5 mm) wrapped in rhodium foil 0.4 mm thick. 

The flux of y-quanta falling on the sample was 

measured with an ionization chamber with thick 
aluminum walls (7.5 em). The ionization in the 
air spaces of sucp a chamber for bremsstrahlung was 
calculated in Ref. l. The measurement of the x-ray 
flux was made by placing the chamber at the posi
tion of the sample each time before and after irradi
ation. In order to avoid having to make a correction 
for the distribution of the y-quanta flux over the 


