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behavior in the fission cross section a f ( E ). For 

nuclei for which the fission by neutrons has a 
threshold character this circumstance is confirmed 
experimentally. 5 

*The first estimate of the fission width was given 
by Bohr and Wheeler 3 who,starting from classical con­
siderations, obtained r f "' ( D I 2 ) N* (E- E f ). As 

indicated in the previous note, 2 for T > > lr w the 
expression, Eq. (1), goes over into the formula of Bohr 
and Wheeler. 

1s. Frankel and N. Metropolis, Phys. Rev. 72, 914 
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T. HE proof of Pauli 1 is based on a considera­
tion of the irreducible representations of 

tensor and spinor quantities under transformations 
of the Lorentz group with determinant equal to 
unity. Schwinger2 noted the connection of this 
theorem with the transformation of quantities under 
time reversal. We here give proof of the theorem 
of Pauli which shows that it is sufficient to re-
strict consideration to the transformation of quan­
tities under inversion of all four coordinate axes 
(general inversion I ) and which emphasizes the 
close connection of Schwinger's idea with the ideas 
of Pauli. 

Under the transformation of general inversion I, 
we have for an arbitrary vector A 

IA=-A, (1) 

from which it follows that under general inversion, 
tensors of even rank T 2 change sign. We 

n +! 
say that a quantity belongs to the ( +) class if it 
does not change under inversion I, and belongs to 
the (-) class if it changes sign. The operation of 
complex conjugation obviously does not change 
the class of tensor quantities. 

We now consider the transformation of spinors 
under general inversion. Without restricting the 
generality, we can consider here and below only 
spinors of the first rank. As is well-known, upon 
reflection relative to a two-dimensional plane 
with normal vector a k , the spinor U transfonns 

according to the law* 

U' =aU, U'= v;,, (2) 

We use the notation a2 =a k ak • We speak 

about space reflections if ak ak = 1, and about 

time reflections if ak ak = -1. It is easy to show 

t]!at the bi-linear quantities composed of U and 
U, which behave as tensors under spatial reflec­
tions, are pseudo-tensors under time reflections. 

Thus, for example, the scalar (fJU) goes into 
(ifa2 U ), and the vector (U h U) goes into 

(VaykaU) = a2 (Dy~~.U)- 2akai ([;y;IJ). 

It is possible, however, so to change the definition 
'of the laws of reflection of spinors that the bi­
linear tensors which are constructed from them 
behave as tensors not only for space reflections, 
but also for time reflections. This can be achieved 
if, in extending the concept of complex conjuga­
tion, two quantities, U* and -U*, are put into 
correspondence with each spinor U. For this we 
introduce, in analogy with the theory of functions 
of a complex variable, a "two sheet" space of 
spinors, where we arrange that the transformations 
which do not change the sign of the time, leave the 
spinor on the same sheet, and the transformations 
which change the sign of the time carry the 
spinor to the second sheet. The conjugate spinor 
U* is 

* U=U* 

* 
on the first sheet, 

U = - U* on the second sheet. 
(3) 

(The asterisk on the right indicates the usual 
complex conjugation.) The dual spinor {] is de­
fined by the equality 
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- * U = Uy~. (4) 

If now, as above, we define the transformation 
of the spinor U by the equality (2), then the conju­
gate spinor transforms according to the law: 

* A* *A 
(U)' = (aU)= Ua+ ( if a k is a space-like vector), 

* ,...* * A 

(U)' = (aU) = -U a+ (if ak is a time-like vector). 

(5) 

With this extension of the concept of conjugate 
spinor the bi-linear tensors constructed from U 
and U behave in the same way under both space 
and time reflections. 

The transformation of inversion is a reflection 
of all four coordinate axes. Consequently, the 
matrix of inversion I in our representation is iy 5 : 

IV= iysU. (6) 

The conjugate spinor transforms according to the 
law 

* * IV= (IV). (7) 

Suppose, for definiteness, that the spinor U 
lies on the first sheet. Then, according to (3) and 
(3 ') the formula (7) becomes 

(7 ') IV*=- (IV)*= iV*Ys· 

Since ( i y 5 ) 2 = - 1, the eigen spinors of the 

inversion operator can belong to two classes: to 
the class ( +) if, upon inversion, they are multi­
plied by + i , and to the class (-) if they are 
multiplied by -i . The formulas (6) and (7 ') show 
that the complex conjugate spinors fall into the 
same class. 

We turn now to consideration of the commutators 
for tensor and spinor quantities. Subjecting the 
known expression for the commutator of tensor 
quantities A (x) to the inversion I 

(A (x'), A* (x")]± = Pn (a I ax) .i (x'- x"), (8) 

taking into account that ~ ( - x) = - ~ ( x) and 
that the quantities A and A* belong to the same 
class, we obtain the relation 

(9) 

Consequently, p (a I a X ) is an even polynomial. 
n 

Considering the commutators for spinors, and 
taking into account the fact that U and U* belong 
to the same class, we come to the conclusion 

[U (x'), U* (x")l ± = P2n+1 (a I ax) A (x'- x"), (10) 

where p 1 (a; ax) is an odd polynomial. 
2n + 

We will suppose that A and U are expanded in 
plane waves. Since the equation connecting the 
field components should be invariant under the 
transformation of general inversion, they should 
have the form 

~kA<+l = ~A<-l; 

~kv<+l = ~uH; 

~kA<-> = ~A<+l~ 

~kv<-> = ~u<+l 

(we use Pauli's notation). 

(ll) 

From these equations it follows that--together 
with the solutions of Eq. ( ll) A { +) , A(-) (U{ +), 

u<-) ), corresponding to the value k - there exist 
A<+ l , -A < -l (U< + >, - u<->), corresponding to 
the value -k. 

We construct the tensors T 2 and T of 
n 2n + 1 

even and odd rank, respectively, defending on k 
and depending quadratically on A { ) , A* ( ±) or 
U ( ±), U*(±). We require that the tensors T 2n 

and T 2n + 1 are gauge-invariant and that they be­

have in the proper way under general inversion. 
Following Pauli's notation, we have, in the case of 
spinor quantities, 

r = u<+>u"<-> + u"<+>u<-> 
2n 

+ k (u<+>u"<+> + u<->u"<->); 

T2n+1 = k (v<+>u"<-> 

+ u"<+>u<->) + u<+>u"<+> + u<->u"<->. (12) 
We show that the quantity T ( U) cannot be 

2n 
positive. In fact, let it be positive for some U (k) 
= U < +> (k) + u<- l ( k ). There exists however, 
also a solution of Eq. (ll) for which {j ( -k) 
= u<+4 (k) _ u<- l (k). For this solution T2n 

changes sign with the substitution of -k fork. 
Tiu'ning now to the quantities T (A) T (A) 

2n ' 2n + 1 

composed of tensor quantities, we have 

T 2n (A)= A<+> A*<+l + AH A"H 

+ k (A<+l A"H + A<->A"<+l); 

T 2n+1 (A) =k(A<+lA"<+l 

+A<-> A"<->)+A<+>A"H + A<-l A*<+l. 
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Repeating the same considerations, we find that 
the quantity T 2n + 1 ( A) cannot he positive. 

Considering only general inversion, we have 
shown that in the case of a spinor field the energy 
density cannot he positive definite, and in the 
case of a tensorfield the energy density cannot 
he positive definite. From these premises and 
from the expressions, Eqs. (8) and (10), Pauli con­
structed the proof of his theorem. 

1W. Pauli, Phys. Rev. 58, 716(1940) (See The Rela­
tivistic Theory of Elementary Particles (Russian trans­
lation), IlL 1947, appendix) 

2 
J. Schwinger, Phys. Rev. 82, 914(1951) (See 

Recent Developments in Quantum Electrodynamics 
(Russian translation), IlL 1954, P• 133). 
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c YCLOTRON resonance, which was theoreti-
cally predicted by Dorfman 1 and has been ob­

served experimentally in semiconductors,2 con­

sists of absorption of microwave power by an 
assemblage of electrons or holes upon which a 
magnetic field H is acting. The absorption takes 
place at a frequency 

v = eHj2rtmc, (l) 

equal to the frequency of rotation of the carriers in 
the field H and is due to electric dipole transi­
tions 3 whose possibility is controlled by the mo­

tion of the charges in quantum orbits. The electric 
dipole transitions are induced by the electric 
vector Ev of the microwave fiela; the transition 

probability is a maximum when E v is perpendicular 

to H. 
In comparison with paramagnetic resonance, 

cyclotron resonance absorption is distinguished 
by its remarkably large intensity. The electric 
dipole transition probability is app,roximately 1012 

times larger than the probability of the magnetic 
dipole transitions in paramagnetic resonance. 4 

Consequently the observation of cyclotron resonance 
requires a carrier concentration 10 12 times smaller 
than is necessary for the observation of paramag­
netic resonance. In view of the sensitivity of 
modern radiospectroscopic techniques it should. he 
possihle4 to observe cyclotron resonance in a 
gas of free electrons at about 104 electrons per 
cm 3 • Cyclotron resonance absorption must occur 
also in the space charge formed by ions of this 
or that substance; the relative magnitude of this 
absorption 3 must be 103 to 104 times less than 
for an electron gas under the same conditions of 
concentration and supplied rf rower. 

The condition that the effect he observable is 
that w T > 1. It follows from the requirement that 
the carrier he able to execute at least one com­
plete rotation in the time between successive col-

lisions. 

Cyclotron resonance may find application in 
gas analysis, in studying the properties of plasma 
(e.g., in measuring ion mobilities and collision 
times), and in mass spectrometry. 

The principle of operation of a possible mass 
spectrometer is similar to that of the rf mass 
spectrometer propsed by Hipple et al. 6 and con­
sists of measuring the cyclotron frequencies of 
ions of the various masses and subsequently 
computing m by formula (1). A schematic diagram 

Schematic diagram of apparatus. 

of the apparatus is shown in Fig. 1. The ion 
source A sends an unfocused ion beam of low 
energy into the condenser K which forms part of 
the resonant circuit of the high-frequency tunable 
oscillator G . In the field H, parallel to the faces 
of the condenser, the ions move along helical 
paths, whose projections upon a plane perpendi­
cular to H are circles of radius p = m c v L / ell, 
where v-L. is the projection of the ion velocity upon 
t~is same plane. Even if an ion executes only a 
smgle rotation during its flight through the condenser 
absorption of high-frequency power must be observable 
at the frequency (1). By modulating the field or 
the oscillator frequency it is possible by the usual 
means to display the resonance curve on an oscil­
loscope or to register it with a recorder. After 


