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A T excitation energies of the compound nucleus 
lying below the fission threshold E f , the 

variation of the fission width with energy is deter­
mined mainly by the barrier factor. Near threshold 
the barrier factor has the form e-1'1 E / f , where 
M = E f- E. Theoretical estimates 1 give 

f "' 100 kev; experimental data agree with this 
value. Thus, right up toE = E f the fission width 

r f is a rapidly increasing function of energy. For 

E = E f the tunnel effect largely ceases, and in the 

region E > E f the behavior of the fission width is 

determined by other factors. The statistical theory 
of the fission width allows one - at least quali-
tatively- to analyze the dependence of r f (E) in 

this region. We 2 obtained previous! y the following 
estimate*: 

r1 "' (1iw I 2rr) N* (E- Ef) 1 /1.'* (£). (l) 

Here w is the frequency of the vibrations of the 
nuclear shape which are related to the fission, N* 
is the number of levels not connected with the 
fission degrees of freedom. By N* (E) the number 
of levels with excitation energy less than E is 

indicated. 
As shown by Landau4 the density of levels with 

a given angular momentum goes basically as e 5 , 
where S = S (E ) is the entropy. Therefore, the 
behavior of the denominator N* (N) is determined 
. by the factor eS , that is,it increases monotoni­
cally. As concerns the numerator N* (E- E f ), 

in the immediate region of the fission threshold it 
is impossible to a.fply the exponential factor to 
it. The formula e is valid for the number of 
-level.s only if the total number of levels is large 
and the distance between them small compared with 
the excitation energy. Near the threshold the 
number of levels N * (E - E f ) is the order of 

unity and the excitation energy E - E f cannot 

be considered large in comparison to the distance 
between levels with the same angular momentum. 

Near threshold, the function N* (E- E f ) has 

a step-like character. Immediately after the 

pointE = E f the intervalE - E f contains only 

one level with the angular momentum considered, 
i.e., N* (E- E f = l. In this region the fission 

width falls according to the law e-S • Upon 
further increasing the energy, a second level with 
the angular momentum considered falls into the 
interval E - E , upon which the magnitude of 

f 
N* (E -E f ) increases suddently by a factor of 2, 

and the fission width al~o increases suddenly by a 
factor of 2. Then, there follows again a region 
in which the fission width drops according to the 
law e-5 until a third level occurs in the interval 

E -E f, etc. 

Thus, the dependence of the fission width on 
energy near to threshold is not monotonic. Of 
course, the picture described above of the step-
like behavior of the fission width is idealized. In 
fact, the true curve r f ( E ) is found to be smoothed 

out on account of the tunnel effect and because of 
participation in the formation of the compound 
nucleus of neutrons with different angular momen­
tum. It is necessary to take into account the fact 
that the neutrons used in the experiment are 
possibly not monochromatic. All the same, there 
is no reason to think that these factors lead to 
a complete smoothing out of the non-monotonic 
behavior of the fission width. For small excita­
tion energies the distance between levels of the 
same angular momentum can reach "' l mev and the 
factors enumerated above are not sufficient 
generally speaking, to smooth out completeiy such 
non-monotonic. features of the behavior of the 
fiss.ion. width whic.h occur so far apart. As the 
excitation energy mcreases these non-monotonic 
features become more frequent and less pronounced 

and for E - E f of the order of several mev they 

are almost completely smoothed out . 
The non-monotonic behavior of the energy-de­

pendence of the fission width near th"eshold should 
say something about the behavior of rhe fission 
cross section in this region. In fact, for the fission 
cross section for neutrons in the range E "' I mev 
and higher we have n 

(2) 

where a is the cross section for formation of 
c 

the compound nucleus and r is the total width. In 
the region of interest the widths r and r - r 

f f 
are apparently of the same order of magnitude 
and, consequently, the non-monotonic behavior of 
the function r f (E) leads to a non-monotonic 
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behavior in the fission cross section a f ( E ). For 

nuclei for which the fission by neutrons has a 
threshold character this circumstance is confirmed 
experimentally. 5 

*The first estimate of the fission width was given 
by Bohr and Wheeler 3 who,starting from classical con­
siderations, obtained r f "' ( D I 2 ) N* (E- E f ). As 

indicated in the previous note, 2 for T > > lr w the 
expression, Eq. (1), goes over into the formula of Bohr 
and Wheeler. 
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T. HE proof of Pauli 1 is based on a considera­
tion of the irreducible representations of 

tensor and spinor quantities under transformations 
of the Lorentz group with determinant equal to 
unity. Schwinger2 noted the connection of this 
theorem with the transformation of quantities under 
time reversal. We here give proof of the theorem 
of Pauli which shows that it is sufficient to re-
strict consideration to the transformation of quan­
tities under inversion of all four coordinate axes 
(general inversion I ) and which emphasizes the 
close connection of Schwinger's idea with the ideas 
of Pauli. 

Under the transformation of general inversion I, 
we have for an arbitrary vector A 

IA=-A, (1) 

from which it follows that under general inversion, 
tensors of even rank T 2 change sign. We 

n +! 
say that a quantity belongs to the ( +) class if it 
does not change under inversion I, and belongs to 
the (-) class if it changes sign. The operation of 
complex conjugation obviously does not change 
the class of tensor quantities. 

We now consider the transformation of spinors 
under general inversion. Without restricting the 
generality, we can consider here and below only 
spinors of the first rank. As is well-known, upon 
reflection relative to a two-dimensional plane 
with normal vector a k , the spinor U transfonns 

according to the law* 

U' =aU, U'= v;,, (2) 

We use the notation a2 =a k ak • We speak 

about space reflections if ak ak = 1, and about 

time reflections if ak ak = -1. It is easy to show 

t]!at the bi-linear quantities composed of U and 
U, which behave as tensors under spatial reflec­
tions, are pseudo-tensors under time reflections. 

Thus, for example, the scalar (fJU) goes into 
(ifa2 U ), and the vector (U h U) goes into 

(VaykaU) = a2 (Dy~~.U)- 2akai ([;y;IJ). 

It is possible, however, so to change the definition 
'of the laws of reflection of spinors that the bi­
linear tensors which are constructed from them 
behave as tensors not only for space reflections, 
but also for time reflections. This can be achieved 
if, in extending the concept of complex conjuga­
tion, two quantities, U* and -U*, are put into 
correspondence with each spinor U. For this we 
introduce, in analogy with the theory of functions 
of a complex variable, a "two sheet" space of 
spinors, where we arrange that the transformations 
which do not change the sign of the time, leave the 
spinor on the same sheet, and the transformations 
which change the sign of the time carry the 
spinor to the second sheet. The conjugate spinor 
U* is 

* U=U* 

* 
on the first sheet, 

U = - U* on the second sheet. 
(3) 

(The asterisk on the right indicates the usual 
complex conjugation.) The dual spinor {] is de­
fined by the equality 


