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Radiation from good conductors is examined by the methods of the electrodynamical 
theory of thermal fluctuations. In the first part of the work, radiation in the wave zone 
is found, with particular attention devoted to the limiting cases of very short and very 
long waves. Radiation from bodies with surface anistropy is examined. In the second 
part of the work, the fluctuating field in the neighborhood of conducting surfaces is con
sidered: near a metallic plane, at the focus of a parabolic mirror, and at the center of 
a spherical mirror. Fluctuating surface charges are calculated. 

1. THERMAL FIELD IN THE WAVE ZONE 

T HE analysis of thermal radiation from heated 
bodies can he considered as a problem of 

phenomenological electrodynamics if, following 
Rytov 1 •2 , random extraneous fields, or equivalently, 
random extraneous currents with zero radius of 
correlation, are introduced as the source of this 
radiation. As has been shown by the author2 , the 
electrodynamic reciprocity theorem allows a sub
stantial simplification of the problem, reducing it 
to quadratures, if the solution to the corresponding 
subsidiary diffraction problem is known. In parti
cular, the spectral density P of the flow of energy 
of the fluctuating field in theruwave zone, per unit 
solid angle, is connected with the effective trans
versality of the absorption for a plane wave with 
the same polarization as the radiation field hy the 
formula 

(l.l) 

where <3 = kT is the temperature of the body in 
energy units {we limit ourselves to the classical 
region of frequencies n w << <3 ), and A. is the 
wavelength. The direction of the quantity P ru is 
the direction of the infinitely distant source of the 
incident plane wave. 

The effective transversality of the absorption is 

(1.2) 

where Q are the thermal losses of the diffracted 
field in tbe body under consideration. 

For good conductors, the diffracted field inside 
the body differs from zero only in a thin surface 
layer, whose thickness we may consider small 
with respect to all dimensions of the body and 
wavelength . In this case, Joule losses may he 
calculated by the formulas of the theory of the 
strong skin effect 4 : the heat arriving at an element 
of the surface of the body dS is 
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dQ 0 = (c I 81') 'fj I H0 12 dS; 'fj = y p.w 1 87ta, (1.3) 

where H is the tangential component of the mag
netic vegtor of the diffracted field on the surface 
of the body, a is the conductivity, and p. is the 
magnetic permeability. To a first approximation, 
H 0 is the same as it would he at the surface of an 
ideally conducting body. 

Thus, for good conductors, the spectral density 
of radiation of interest to us can be represented 
in the form 

where S is the surface area of the body, and 

(1.5) 

is a dimensionless function of direction and polari
zation, generally of order 1. 

Integrating Eq. (1.4) over both polarizations 
and all directions, we obtain the spectral density 
I of the total radiation 

c.J 

(1.6) 

where dO is the element of solid angle, and G 1 
and G 2 correspond to the two different polariza-
tions. In the future, in considering solids of revo
lution and plane laminae, G will be denoted by G 11 
for a wave whose electric vector lies in the 
meridian plane (or plane of incidence), and by G ..L 
for a wave whose magnetic vector lies in the 
meridean plane. 

Exact solutions of diffraction problems (for ex
ample, for a sphere or disc) are represented by 
functional series, the substitution of which into 
Eq. (1.5) gives, after completing the quadratures, 
a certain series for the desired function G. We will 
not consider these exact solutions here, hut will 
limit ourselves to those cases in which all the di
mensions of the body are either great or small with 
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respect to the wavelength. Then approximate solu
tions of the diffraction problem can be used (geo
metrical optics, quasi-stationary approximation), 
yielding finite algebraic expressions for G. 

I. Shortwave Radiation 

If the wavelength A is small compared to all dimen
sions (including radii of curvature) of an ideally 
conducting convex body, then in the geometrical 
optics approximation, the diffraction field H is 
zero on the shaded part of the surface of the <body, 
and on the illuminated part is determined by the 
reflection formula 

H0 == 2 [h- n(n·h)] Hinc (1.7) 

where n is a unit vector normal to the surface of 
the body, and h is the base vector of the magnetic 
vector of the incident wave. Substituting (l. 7) 
into the general formula (1.5), we obtain 

(1.8) 

where the integral is taken only over the illuminated 
portion of the surface of the body. For bodies 
having a center of symmetry, the integral over the 
shaded portion is evidently equal to the integral 
over the illuminated portion, so that the formula 
(1.8) for such bodies can be written in the form 

0 = ~ ~[I -(n·h) 2] dS = 2 [l- (n·h) 2 J, 

I where the bar denotes an average over the surface of 
the body. Let us consider two examples: 

a) Plane thin Lamina (Fig. l). For a parallel
polarized wave, the vector h is parallel to the 
lamina, and n • h"" 0. For a perpendicular-polar
ized wave, n · h"" sintY. Consequently, 

Gu = 2; G L = 2cos2 .&. (1.9) 

For t'J = 0, as could be expected, G11 = G~; for 

!J = 1T /2, G.L = 0 and the thermal radiation is linearly 
polarized. 

b) Solid of Revolution With a Center of Symmetry 
(Fig. 2). Let the origin of the coordinates coincide 
with the center of symmetry, with the z-axis along 
the axis of revolution of the body. The direction 
cosines of the normal vector n are denoted as usual 
by ex, {3 y, and the orientation of h by hp h 2, h 3 • 
In view' of symmetry, evidently, 

IX~=~~= jiX = 0; IX2 = ~2 = lj2 (1-f), 
so that 

For a parallel- polarized wave 

(n·h)2 = 1/2 (I -- r2). 

For a perpendicular-polarized wave 

Thus, for solids of revolution with a center of 
symmetry 

Gu =I+ 12; (1.10) 

G j_ = 1 + j 2 + (I - 3j2) sin2 .& • 

Just as in the case of the lamina, ell does not de
pend on the angle !J. For a sphere, y 2 = 1/3, and 

(l.ll) 

2 
For a thin disc, y "'1, and 

Ou = 2; G.1_ = 2cos2 .&, 

i.e., we obtain the result found earlier. For a thin 
extended needle, y 2 ., 0, and 

G 11 = I; G .l = I + sin2 .& . 

Generally, for an oblate convex solid of revolu
tion, it is evident that y 2 > 1/3, and consequently 
according to (1.10), G..L.:::_ G11 , and CoLis maximum in ' 
the direction of the axis of revolution [}"" 0. But 
for a prolate convex solid of revolution, y 2 < 113, 
G > G dG . . · h :J. _ ,.,~ J. IS maximum m t e equatorial 
plane lJ "" TT/2. 

n 

FIG. 1 

\ 
) 

In particular, for an oblate spheroid of eccen
tricity e 
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2 (ch x + 1) (sh x- x) . 
1 = (ch x -1) (sh x + x> , X = 2 arth e 

and for a prolate spheroid of eccentricity e 

..... 2 = (1 +cos cp) (cp ~sin cp) · CD= 2arcsin e. 
1 (1- cos cp) (q> + slncp) ' • 

(1.12) 

(1.13) 

A graph of y 2 versus e, based on Eqs. (1.12) and 
(1.13), is given in Fig. (3). Using this graph and 
the general forniula (1.10), the shortwave thermal 
radiation can be calculated for any metallic spheroid. 
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FIG. 3 

Substituting (1.9) or (1.10) into the general for
mula (1.6), we easily find that in both cases the 
spectral density of the total radiation is 

(1.14) 

We will now show that formula ( 1.14) is valid for 
an arbitrary convex body. We note that this could be ex
pected beforehand, since in the geometric optics 
approximation, the usual formulation of Kirchoff's 
law is valid, and the total thermal radiation does 

not depend on the form of the body, but only on its 
surface area. 

Adding Eqs. (1.8) for the two possible mutually 
perpendicular polarizations hi and h 2 and noting 
that (n · h 1) 2 + (n ·h2) 2 = 1- (n · 1)2, where 1 is 
the base vector of the wave vector of the incident 
wave, we obtain for the summed factor G = G 

t I 
+ G 2 the following expression: 

Gt = f ~ [1 +(n.l)2 ] dS. 

We will integrate this equation over all directions. 
To each direction may be compared its direct oppo
site, for which an illuminated part of the surface 
appears as a shaded part for the original direction. 
Therefore, 

~GtdQ= ~ ~~[1 +(n.l) 2JdSdQ. 

But for arbitrary n, 

so that 
~(n.l)2 dQ = 4'1t I 3, 

~ Gt dQ = 327t I 3. (1.15) 

Substituting (1.15) into (1.6), we again arrive at 
Eq. (1.14) for the total radiation of an arbitrary 
convex metallic body in the geometrical optics 
approximation. 

3. Longwave Radiation 

If the wavelength is large compared to the di
mensions of the body, we can confine ourselves to 
a consideration of the diffraction problem in the 
quasi-stationary approximation. In the quasi
stationary approximation, the magnetic vector is 
H = H where H is found from the solution o pot' pot 

of the magnetostatic problem of an ideally con
ducting body placed in a homogeneous external 
magnetic field H. . Actually, the vortical 
addition H , g~~~rated by the changing electric 

vort . 
field, is determined by the equatwn curlHvort 
= (2rri/A) E. But considering order of magnitude, 

I curl H I "' n; a) H (a is a characteristic 
vort vort 

dimension of the body, a << A) and consequently, 

lf vort "' (a/A)E"' (a/A) H pot• since Hpot ""' Hinc 

,.._, E. Thus in the quasi-stationary approximation, 
thermal losses are due to the magnetic vector* of 
the incident wave. 

* Taking account of the electric vector of the inci
dent wave is essential only for very thin rods (wire 
antennae)having resonance properties. Thermal radia
tion of such rods has been considered by Rytov and the 

author5• 
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A magnetostatic problem for a body with zero 
magnetic permeability corresponds formally to an 
ideally conducting body on the surface of which the 
normal component of the magnetic vector is zero. 
We note that when the body possesses three 
mutually perpendicular planes of symmetry, it is 
sufficient to find the factor G only for the three 
principal axes. Let Hinc ""h ""h 1 i + h2 j + h3 k 

where i, j, k, are the base vectors of the principal 
axes. Clearly, 

H0 = h1H01 + h2Ho2 + h3 Hoa. 

where, for example, H is the magnetic field 
01 

corresponding to H. , i. In view of the symmetry 
J(lC 

of the body, integrals of the form 

~ Ho1Ho2dS = 0, 
and therefore, for arbitrary direction h, the function 
G is 

(1.16) 

As an example, we consider a body having the 
form of an ellipsoid with semiaxes a, b, c (a> b 

:::_ c). Substituting the solution of the magne~static 
problem for an ellipsoid with p. "" 0 (see for example 
Ref. 6, where the detailed solution of the equivalent 
electrostatic problem is given), we obtain after 
straightforward hut somewhat laborious calcula
tions, the following expression for G 1: 

where 

b• x{l .. /(b2-u) (u-c2) du 
j V u (a2- u) 
c• 

a• 
X \ .. / v (a2- v) d 

j V (v-b2)(v-c2) v 
b' 

b' 
\ Jlr u (a2- u) d + j (b 2 - u) (u- c2) u 
c• 

a• 

(1.17) 

xl J/(v-b2)(v-c2)d} 
) v (a2 - v) v ' 
b' 

00 

M abc\ 
1 = 2 j dsj(a2 + s) 

(1.18) 

0 

XV (a:.t + s) (b2 + s) (c2 + s) 

Formulas for G and G3 are obtained from (1.17) 
and (1.18) by cycfic permutation in the expressions 

under the integrals and in the factor outside the 
integrals, with a subsequent change of sign if 
negative expressions are obtained during such 
permutations. We note that M 1 + M 2 + M "" l. We. 
will not write here the re_presentations of the right 
hand side of (1.17), (1.18), as well as the area of 
the ellipsoid S by elliptic integrals, hut will limit 
ourselves to the case of an ellipsoid of revolution 
for which the quantities of interest to us are ex
pressed by elementary functions. Omitti1 the 

intermediate transformations, we present the final 
formulas. 

Oblate spheroid (a "" b :::_ c) of eccentricity e: 

= 2 ( 1 - Mf2 (x ch x - sh x) 

7 ( ch x - 1) ( sh x + x), 

Gl = G2 = GE 

= 4 (1 + Mp (ch X sh X- X) 

-+ ( ch x - 1) ( sh x + x), 

(1.19) 

M = Ma = cth2 x2 ( 1 _ arctg sh (xI 2) ) 
sh (X I 2) 

where X is associated with e by formula (1.12). 
Prolate spheroid (a:::_ b , c): 

G1 =Gp 

= 2 (1 - Mf2 (sin <p - cp cos cp) 

.,. (1-coscp)(cp+sincp); 

G2 = Ga = GE 

(1.20) 

= 4 (1 + M)-2 (cp- cos <p sin cp) I (1 -cos cp) 

X (<p + sin <p); 

M = M1 = ctg2 ..!..( arth sin (q> 1 2) _ I); 
2 sin(rpl2) 

where cpis associated with e by formula (1.13). 
The indices "p" and "e" in Eqs. (1.19) and (1.20) 
denote " 1 " d " " · . po e an equator, , respectively. 

For solids of revolution, the general formula 
(1.16) can be written in the form 

G = h~GP + hjpg, 

where hP is the projection of h on the axis of revo
lution, and he is the projection on the equatorial 
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plane. For parallel and perpendicularly polarized 
waves, respectively, 

For a sphere (e = 0), Eqs. (1.19) and (1.20) give 
G = G = 3/2 so that* 

P e ' 

(1.22) 

For a disc (e-+ l), it follows from (1.19) that 

G 8( 1) 8( 2a 1) p ="7 arthe- 2 =-;2 Inc-- 2 ; 

and 

Gl·•= 1·, G 8 (I 2a 1). 2~ 
• _j_=~ nc-2 Stn ..,.+cos2 .&. 

For a needle (e-+ l), formula (1.20) gives G 
p 

= 1 and G = 2 so that 
e ' 

G 11 = 2; GJ.. = l + cos2 .&. (1.23) 

The dependence of G and G on the eccentricity 
P e 

e, calculated by formulas (1.19) and (1.20), is shown 
in Fig. (4). Using these curves, the long wave 
thermal radiation of an arbitrary metallic spheroid 
can be calculated by Eq. (1.21). 

For an oblate spheroid, G > G and on the basis 
p e 

of Eq. (1.21), G ..l is maximum in the equatorial plane 
lJ = TT /2. For a prolate spheroid, G < G e, and G ..l 
is maximum in the direction of the ~is of revolution 
lJ = 0. In the case of short wave radiation, the situa
tion is opposite as was shown in Section l. 

In Section l we established that the short wave 
radiation of a thin plane lamina of arbitrary form 
possesses circular symmetry with respect to an axis 
perpendicular to the lamina. It is easily seen that 
long wave radiation possesses the same symmetry. 
In fact, a thin lamina with p. = 0, placed in a homo
geneous magnetic field does not disturb the field. 
Therefore, for coordinate axes x and y chosen in the 
plane of the lamina, G 1 = G 2 = 1, whence follows 
circular symmetry of the radiation. For the third 
axis z perpendicular to the lamina, the factor G 3 
is of logarithmic magnitude. For example, in the 
case of a strongly prolate elliptical disc (a >> b 
»c), Eqs. (1.17) and (1.18) give G1 = G2 = 1; G3 

= ln(4b/c)- l. 

* The curve of the transition from (1.22) to (1.11) is 
given in Ref. (2). 

r-------------~2.0 

1,0 
u u u u u 0 u u u u u 

needle -e sphere e--- disc 

FIG. 4 

Thus, for long wave raliation of any thin plane lamina 

G 11 =I; G~ =Asin2 .&+cos2.&, 

where the lactor A is of the order of the logarithm 
of the ratio of the width of the lamina to its thick-
ness. 

At the beginning of this section it was mentioned 
that very thin rod like conductors (wire antennae) 
possess resonance properties, thanks to which the 
Joule losses due to the electric vector of the inci
dent wave may become commensurate (even in the 
case of small bodies) with the losses associated 
with the magnetic vector. To these "electrical 
losses" correspond the thermal antenna radiation 
considered in Ref. (5). As was shown in Ref. (5), 
for sman bodies, the antenna radiation has a dipole 
character: it is II -polarized and is proportional 
to sin 21}, where {} is the angle between the rod and 
the direction of radiation. But according to the 
first of Eqs. (1.23), the "magnetic"radiation con-
sidered above of the same polarization does not 
depend on the angle lJ. Let us compare the spectral 
densities of both radiations. For example, let the 
rod have the form of a strongly prolate spheroid 
a>> b =c. The spectral density of thermal "an
tenna" radiation of this spheroid for long waves 
(A» a) was calculated in Ref. (5), and in the 
notation of the present article is 

Jant = ~a5 (I !:.. j2 8· 
cl.! 0 c J 'l· 

The spectral of the "magnetic" radiation of 
interest to us is !!-polarized according to Eq. (1.6), 
and the first of Eqs. (1.23 ) gives 

.Thus, for a small thin needle, 
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Jan~ ( 7t' a2 a \2 
- -- --In-) 1-mag- 2 cJ... c • 

3. Radiation of Bodies with Surface 
Anisotropy 

In radio technology and radiophysics, more and 
more use is being made of conductors with aniso
tropic surfaces, characterized by a surface impe
dance tensor (see, for example, Ref. 7). Joule 
losses in such conductors are determined by the 

formula 

dQ. 0 = (cj8TC) ('Ylu I Hou j2 + '1/v I Hov 12) dS, · (1.24) 

clearly a generalization of Eq. (1.3). u and v are 
orthogonal curvilinear coordinates on the surface 
with respect to which the surface impedance tensor 
is diagonal, and 

'1/u = Y <il!-'-u/8TCav; 'tlv = Y <il!-'-v/8TCau, 

where a , a , /l , /l are the effective quantities 
u v u v 

corresponding to each type of laminated or similar 
structure. 

Introducing the mean value Tf, 

'tju=(l+v)'tj; 'fjv=(1-v)'tj; -1<v<1 

,and substituting (1.24' into the general formulas 
(1.2) and (l.l), we again obtain expression (1.4) 
for the spectral density of radiation, with the factor 
G given by 

G = ~ {(1 + v) I H 0u 12 (1.25) 

+ (1 - v) I H0v j2} dS /I HincJ2 S. 

As an example, we consider the radiation of a 
sphere for which the lines u = const are parallels 
and the lines v = const are meridians. If the sur
face of the sphere is isotropic (v = 0), then G1l = G .1 
= G. , where G. = 4/3 for short waves and 3/2 tso ~~ 
for ong waves. With v.;, 0, a straightforward cal-
culation based on Eq. (1.25) gives the same result 
in both the geometrical optics approximation and 
the quasi-stationary approximation: 

G u = 2 - v G . . G J.. = (2 -2 v + 32v sin2 .s-) G. 
2 iso . ISO 

The agreement of the results is explained by the 
lact that on the illuminated part of the surface 
of the sphere, the magnetic field H 0 has the same 
geometry in both the geometrical optics and the 
quasi-stationary approximations. 

With Tf u > Tf" (as would be the cas~ for exam_ple 
if a sphere was completely wound With bare wne, 
the windings of which coincided with the parallels), 

v > 0, and the radiation is mrudmum in the equa
torial plane () = rr/2. In particular, with Tf >> n 

u "tv 
(v"" l) 

Gn= 1/2G.; GJ..= 1/ 2(1 +3sin2 .&)G .. 
ISO ISO 

In the opposite case Tf < Tf the radiation will 
have a maximum in the dfrecti~n of the axis of 
symmetry of the sphere, IJ = 0. In particular, with 
Tf « n (v"" -l) u "tv 

G 11 = %G. , G J.. = % cos2 !JG. . 
ISO ISO 

As a second example we consider the radiation 
of a thin plane anisotropic lamina, for which the 
coordinates u and v are the rectangular coordi
nates x andy. Let(} and cpbe the polar angles of 
the wave vector of the incident wave. Then in 
the geometrical optics approximation, we obtain 
after a straightforward calculation, in place of Eq. 
(1.9), 

G 11 = 2 ( 1 - 2v cos 2cp); 

G1_ = 2cos2 .&(1 + 2vcos2 cp). 

But in the quasi-stationary approximation, we will 
have 

G 11 = 1 - 2v cos 2<p; 

G 1_ = A sin2 .& +cos 2.& (1 + 2'V cos 2cp). 

2. FLUCTUATING FIELD NEAR HIGHLY 
CONDUCTING SURF ACES 

In the first part of this article, the thermal ra
diation of good conductors was considered in the 
wave zone. However, the fluctuating field near 
radiating bodies, at distances commensurable with 
or smaller than the dimensions of these bodies, 
also has practical interest. As was shown in 
Ref. (3), the problem of finding the fluctuating 
field at any point outside the radiating body may 
be reduced to quadratures by use of the electro
dynamic theorem of reciprocity, if the diffracted 
field created by an elementary source situated at 
this point is known. Thus, for a uniformly heated 
body at the temperature e, the mean squar~ spec
tral density of any component of the electnc vec
tor is* 

(2.1} 

* We are using the same notation as in Refs. 2 and 3. 
The index c..> in the spectral density denotes that it· 
corresponds to the. decomposition in the spectrum 
according to positive frequencies. Wherever fluctua
ting quantities are mentioned, we have in mind spectral 
densities. 
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where F = J j 0dV = iwp is a quantity characterizing 

the electric dipole formed by the extraneous elec
tric currents j 0 flowing in the vanishingly small 
volume of integration r, and Q 0 represents the 
thermal losses of the diffracted field created by 
these dipoles in the body under consideration. The 
direction of the vector F coincides with the direc
tion of the component of the electric vector of in
terest to us. An equation similar to Eq. (2.1) is 
valid for the magnetic vector of the fluctuating 
field, the only difference being that the source of 
the diffracted field is a magnetic dipole, formed 
by extraneous magnetic currents j~, F = J j;:' dV. 

In good conductors, the diffracted field differs 
from zero only in a thin skin-layer. In the future 
we will always consider that all dimensions of the 
body, the wavelength, and the distance from the 
surface of the body to the point at which the fluc
tuating field is determined, are great in comparison 
with the thickness of the skin-layer o. Then the 
thermal losses Q 0 may be calculated by the theory 
of the strong skin effect 

(2.2) 

Substituting (2.2) into (2.1), and introducing as a 
standard the mean square of the spectral densities 
of the field vectors in equilibrium radiation 

I Eeq.1- =I Heq.l2 = 2Eik2j..-:c, 

we obtain 

(2.3) 

fHl2 = 1/2 Tjj Heq.l2 h. 

Here, e and h are dimensionless factors depend
ing on the geometry of the body, the wavelength, 
and the coordinates of the point at which the fluc
tuating field is being determined, 

C2 ~ el , 
e = lt1tk2 'j' I Ho I" dS; (2.4) 

- c2 ~ ,,mag2 h- -4 12 Jno IdS, 
1t/l 

where Hel and Hmag are the diffracted fields of 
0 0 

unit (F = 1) electric and magnetic dipoles with 
pertinent orientations. The factor 1/2 is introduced 
into Eq. (2.3) for convenience: with such normali
zation, the factor e for the component of the elec
tric vector parallel to a radiating plane tends toward 
unity at large distances from the plane. 

In the following, we will consider only those 
problems in which the diffracted field may be calcu
lated by reflection formulas. In this case, H 0 = 

2H 1 tan, where H 1 is the fi~ld of a unit dipole in 
free space, and Eq. (2.4) may be written in the 
form 

C2 l' 1 (2 5) 
e = -" \ l!n·H~ J 12 dS· · 

1tk" j ' 

(n is a unit vector normal to the surface). The 
fields of the unit dipoles in free space, as is well 
known, are 

el ik ( i ) Hl = cR 1-kR [fp], (2.6) 

HJilag _ __!_~{_ {( 3i 3 \ 
1 - cR \I - kR - k 2R2 ) (fp) P 

(2.7) 

-(1- k~- k2~2) t}. 
where f is the base vector of the dipole, p is the 
base vector of the radius-vector R = Rp, and the 
wave factor e ·ikR is omitted. 

l. Thermal Field of a Conducting Plane 

Let the origin of a cartesian system of coordinates 
be at the point where a dipole is situated, with the 
z-axis perpendicular to the radiating plane, and let 
R, 0, 9be spherical coordinates. The coordinate Cfl 
is also the polar coordinate on the plane (see Fig. 
5). The element of area is dS = rdrd Cfl = RdRd Cfl· If 
the base vector f of an electric dipole is directed 
along the x-axis, then 

I el j2 k2 ( 1 ' 2 [n·h 1 ] = c2R2 1 + k2R2) cos .& 
(2.8) 

Substituting this expression into the general for
mula (2.5), we obtain, after integration, 

For f parallel to the z-axis, 

I [n·h'~1J j2 = c:~2 ( 1 + k;R2 ) sin2 .& (2.9) 

k2 ( 1 ) R2 - z2 

= c2R2 1 + k2R2 R2 . 

At large distances the right hand side of Eq. (2.9) 
decreases as 1/ R 2 , so that a direct substitution 
of (2.9) into the equation for e z leads to a logarith
mically diverging expression. But as is well known, 
the reflection formula:s cease to be valid at large 
distances; they must be multiplied by the Sommer
feld attenuation function (see for example, Ref. 8), 
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the argument of which is the quantity (77c/2np.A2)r, 
called the numerical distance. It was not necessary 
to take this attenuation into account in order to 
find e , because Eq. (2.8) tends toward zero suffi-

x 
ciently rapidly (as 1/R 4). But if, as occurs in our 
case, H tan falls off only as 1/R, it becomes neces
sary to take attenuation into account. To do this, 
the square of the attenuation function must be intro~ 
duced under the integral sign. However, we will 
not do this here, but will limit ourselves to giving 
a sufficiently accurate approximate calculation; 
without changing the exyression under the integral, 
we will integrate over the R term giving logarithmic 
divergence, not up to infinity, but up to the quantity 
L of the order L "-' up.A.2/c. Doing this, we.obtain 

L 1 
ez = 2ln-z + 2k2z2. 

For a magnetic dipole whose base vector f is 

parallel to the x-axis, 

I [n·h'magl2 = ~ {( - _1 1 • 
1 J c2R2 1 k2R2 + k'R•) 

- cos2 cp [ ( 1 - k2~2 - k•!.) 
+ 4 cos2 & (k2~2 + k•~•) 

-cos4 &(1 + k2~2 + k•~•)J} 
and after integration (cosu= z/R) 

L 3 hr=ln- + --. z 8k4z•' 

where we have again replaced the infinite limit 
of integration by L for the logarithmic term. 

Finally, in the case of a magnetic dipole parallel 
to the z-axis, 

magi k2 ( 3 9 ) 2 & · z & I [n·hl J 2 = c2R2 1 + k2R2 + k·R• cos sm , 

Since in our case, in view of symmetry, [Ej2 
= 21Exl 2 + IE -:-1 2 , the electric energy density of 
the fluctuating field of a plane is 

wr;} = { "'JW!~. (2e.r + ez) (2.10) 

.el ( L 3 ) - r,w Jn 
- I eq z + 4k2z2 . 

Similarly, 
mag 1 !llag 

W, = y "')Wfeq. (2h.r + hz) (2.ll) 

= wmagfln !::_ + _1_ + _1_) 
"'' \ z 4k2z 2 2k·z• · 

where 
el mllJ!'. 1/ w-- = w'='= w eq. eq. 2 eq. 

and terms of the order of unity have -been omitted 
on account of the indefiniteness of the quantity L. 
The total energy of the fluctuating field is 

el mag (l L 1 1 ) w, = ~"' + w, = "'JWreq. n z + '1Jl2z2 + 4k·z• • 

Let us note once again that all the formulas of 
the present section are, by the very manner in which 
they were obtained, valid only for distances z large 
COIIllared to the thickness of the skin-layer o; z>>o. More
over, formulas containing the quantity L are valid 
only under the condition z << L, which is always 
realized in practice. 

FIG. 5 

Comparing Eqs. (2.10) and (2.ll), we see that 
in the neighborhood of the plane, at distances 
z << A., the magnetic energy considerably exceeds 
the electric energy 

so that w"" wmag. 

Let us now calculate the energy flow vector for 
thermal radiation from a plane. We will even con
sider a more general problem: we will find the 
z-comp,ment of the Poynting vector on the axis of 
a circular disc of large (compared with A.) but 
finite radius. In view of symmetry, 

- -. (2.12) S,z = (cj2rr) Re [E·If]z = (cjrr.) Re E.rH y· 

As is shown in Ref. (3), the mean value of the 
product of two components of the fluctuating field; 
A and B, (in our case, A = Ex' B = H* y ) is 

(2.13) 

where 0 AB are the mixed thermal losses A and B 
of the diffracted field. For good conductors, 

QAB = ~~ ~ [n•HoA]•{n•H0B] dS. (2.14) 
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If HoA and H0B are the fields of unit dipoles, 
then the factors FA and F B in Eq. (2.13) must be 
omitted. If, moreover, the reflection formulas may 
be used, then finally 

- C81) \ 
AB = 1t2 ) [n·HIA]{n·H1B] dS, (2.15) 

where H.lA and H 1B are the fields of unit dipoles 
Aand B m free space. We note that if B is equal 
to the complex conjugate of any component of the 
field, then not the fields H0 B and H1B themselves, 
but their complex conjugates, must be substituted 
into Eqs. (2.14) or (2.15). 

In the case of interest to us, H lA is given by 
Eq. (2.6) with f = i, and H1B by the complex con
jugate of Eq. (2.7) with f = j. Then, as is easily 
seen, 

R E H ,,, 81Jk2 \ " ( l . 9 " • • ) dS e .~ y = 1t2c ~cos v - sln" v sln" r;; R2 • 

Performing the integration and substituting the re
sult into (2.12), we obtain 

where ell is the angle suhtended by the radius of 
the disc. In particular, for an infinite plane (ell = 
rr/2) 

(2.16) 

At normal incidence, the reflection coefficient of 
a highly conducting plane is R = 1 - 47], so that 
Eq. (2.16), as could be expected. agrees with the 
expression given by the Kirchhoff theory of thermal 
radiation. 

2. Thermal Field of Metallic Mirrors 

Metallic mirrors, used in optics and radio tech
nology as focussing structures, are as a rule large 
compared with the wavelength. Therefore. to find 
the fluctuating field at points whose distances from 
the mirror are also large compared to A., we may 
limit ourselves to the geometrical optics approxi
mation. Then only wave terms remain in Eqs. (2.6) 
and (2. 7), and these equations take the form 

Hf1 = (ikjcR) [fp]; H:Uag= (ikjcR) [[fp] p]-(2.17) 

The substitution of (2.17) into the general formulas 
·(2.5) for e and h yields the purely geometrical 
quantities 

e = .!_ \ [nM]z dS. h = .!_ \ [ N]2 dS (2.18) 
7t ) R2 , 7t ) n R2 , 

M = [fp]; N = [[fp) p). 

Let us find the fluctuating field in the focus of 
a paraboloidal mirror. The origin of the coordinate 
system is placed at the focus in such a way that 
its axis coincides with the axis of revolution (Fig. 
6 ). It is easy to see that for a paraboloid 

dSj R2 = 2 sin~ d-3- dq;, (2.19) 

. & 
nx = sm 2 coscp; 

. & . & 
ny = sm 2 sm-:p; nz =cos 2. 

Forming the quantities n x M and n x N of interest 
to us, and performing straightforward trigonometric 

z 

FIG. 6 

transformations, we obtain, after carrying out the 
integration in Eq. (2.18): 

e_~ = 4 [(1- cos i)- (1 -cos3 i) 

+ ~ (t-cos5 i)J; 
(2.20) 

ez = 32 [ ~ ( 1 - cos3i) -- ! ( 1 - cos5~) J ; 

[( <D 1 ' <D 
hx = 4 1 - cos 2 ) + T ( 1 - cos3 2 ) 

4 ( <1>' 4 ( <D)] -- 1- cos5-) +- 1- cos7 -5 2 7 2 ' 

where <I> is the angular opening of the mirror. In 
particular, for an infinite paraboloid (<I>= rr) 

ex= 16/5 = 3.20; ez = 64/15 = 4.26; 

h.~= 464/105=4.42; hz= 64/35 = 1.83. 

Curves calculated on the basis of Eq. (2.20) are 
given in Fig. (7). 

Furthermore, from Eq. (2.20) 
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= 8 [(1 -cos ~J + ~ (1- cos3~)J, 
so that at the focus 

el mag 1 
Ww = Ww = z-Ww 

= 27Jw~[(1- cos i) + ~ (1- cos3~)]. 

In particular, for an infinite paraboloid w = 

(l6/3)7]Weq. "" 
As a second example we consider the 

fluctuating field at the center of a spherical 
mirror with an angular opening II>< rr/2 
(~ig. 8}. In this case, dS/R 2 = sinr'J,Ndr.p.- After 
simple calculations we obtain 

ex = h.r = (I -cos II>) + lj3 (I - cos3 <lJ), (2.21) 

ez = hz = 2 [(I -cos <ll) - 1/3 (1 - cos3 <ll)J. 

In particular, for a hemis£_here ex = e z = h x = hz 
= 4/3. Curves based on l!.:q. (2.21) are given in 
Fig. (9). 

In the case of a spherical mirror, again, 

el mag lj , 
Ww = Ww = 2 'lew, 

a Ww = 27JWeq.(l -COS <ll) = 47JWeq • .0/4r:, 

where n = 2rr(l - cosll>) is the solid angle of the 
mirror. 

For parabolic and spherical mirrors with a small 
angular opening (II>« 1) Eqs. (2.20) and (2.21) 
evidently give the same expressions 

3. Fluctuating Surface Charges 

As is well known, in the solution of high-fre
quency electrodynamical problems in regions con
taining good conductors with a strongly expressed 

skin effect, we may limit ourselves to the con
sideration of the.electromagnetic field only exterior 
to these conductors. It is only necessary tore
quire that on the surface of good conductors, the 
external field vectors satisfy the approximate 
Leontovich boundary conditions9 • Finding the 
thermal radiation of such bodies may also be treated 
(see Ref. 2) as an external electrodynamic boun
dary value problem: the sources of the fluctuating 

field are the random surface extraneous fields 
~ntering into the Leontovich boundary conditions, 
mtroduced into the theory as the equivalent of 
random volume fields. The external radiation of 

.i 

2 

I 

rM·u·&·@·~·~·~·~·~· 
1/J-

FIG. 7 

z 

FIG. 8 

the body is due to the volume extraneous fields 
distributed in the skin -layer. Hence, the replace
ment of volume sources by surface sources corre
sponds formally to the transition to the limit 
o-> 0. Therefore, within the limits of such a "'sur
face." treatment of the fluctuating fields usivg 
the mhomogeneous Leontovich conditions, it is 
natural to introduce the random surface charge 
densities 

a= (1j4T:) (En)gur• 

which are characterized by the correlation func
tion 
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(2.22) 

where a and b are points on the surface of the con
ductor. 

Here, we will find this correlation function for 
distances small in comparison with all dimensions 
of the body and with the wavelength. Then, 
clearly, the surface of the body may he replaced 
by a plane, Eq. (2.22) may he written in the form 

(2.23) 

and the right hand side of (2.23) may he calculated 
by a formula of the type (2.15) 

(2.24) 

Furthermore, in the expressions (2.6) for H 1 b 

it is possible to leave only quasi-stationary terms 

where we have taken account of the fact that in 
our case f = f - n a b- • 

tP-

FIG. 9 
We will first calculate the right hand side of 

Eq. (2.24) with z not equal to zero. Let D he the 
distance between the points a and b at a distance 
z from the plane; r a and rb are the projections 
of the vectors Ra and Rb on the plane, t(l is the 
angle between these projections (Fig. 10), r and 
cpare polar coordinates on the plane, the origin of 
which is midway between· the projections of the 
points a and b. Then I [n x p] I = sinll = r/R, so 
that 

E E* _ (0"1] \ rarbcos<ji 
az bz - n2c .\ R3 3 dS. 

aRb 

(2.25) 

Using the theorem concerning the square of a side 
of a scalene triangle, we easily find 

RaRb = [(r 2 + 1/ 4 D2 + z2)2- r2D2 cos2 cp]'l•, 

and the calculation of the integral in (2.25) gives 

EazE;z = (fhi/2"c) Z (z2. + D2j4)-'!•. (2.26) 

13ut 

FIG. 10 

where o(r - r ) is the two-dimensional a-function. 
a b ) Now substituting the limiting expression (2.26 

into (2.23), we obtain the correlation function of 
interest to us 

cracr~ = (81)/4h"2C) o (ra- rb)· 
(2.27) 

The fluctuating charge relating to the area of the 
surface S is q = J u dS. On the basis of Eq. (2 .27), 

s 
its mean square is 

J(/f:l = \ · \ cracr; dSadSb =~,Hi S 
~ .\ J7t c 
s s 

or, transforming to the spectral densities of the de
composition according to positive frequencies 
(the remaining random quantities in this paragraph 
were spectral densities of the interval -oo < w 
<-too), we have 

q~ = (81J/2~~c) S. 
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