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The question of the character of the phase transition from the ~non.ferrolectric to 
the ferroelectric phase is discussed. The influence of an electric held on !he tempera­
ture for the phase change is considered. It is shown that in the case of a hrst ~rd~r phase 
change, a shift in the transformation point takes place. and the amount of the shift IS cal­
culated. The temperature dependence of the difJectric permeability is found for the case 
of a second order phase change. It is shown that in such a trans_formation _an .. indu'?ed" 
piezoeffect" must appear, which consists in the appearance of piezoelectnc properties 
under application of an electric field. The "induced piezomoduli" are calculated. 

I. INTRODUCTION 

I N spite of the large number of works devoted to 
. the theory of barium titanate, it is still far from 

completion. This refers, in the first place, to the 
microtheory of ferroelectric phenomena, hut neither 
can the thermodynamical theory evolved by Ginz­
hurg1 and developed in Refs. 2-6 he considered 
fully complete. On the one hand, there are still 
questions not considered in these works and on the 
other, there is a need to compare the existing 
theories among themselves. 

In Ref. 1, there are discussed two variants of a 
theory which is in conformance with the experi­
mentally observed facts. According to the first 
version, the phase transition at 120° should he con­
sidered as a second order phase change, hut close 
to a phase change of first order. According to the 
second version it should he considered as a first 
order change, hut close to a change of second order. 
In Refs. 2 and 3, this phase change is considered 
as a first order change, while in Refs. 4-6, as a 
second order change. 

An attempt was made 7 to settle the question 
about the character of the phase transformation 
from the nonferroelectric phase by way of investi­
gation of the dependence of the dielectric permea­
bility near the Curie point on the strength of a 
steady electric field. The author found that the 
experimental data are in good agreement with the 
theory2 and on that basis concluded that the phase 
change under investigation must he considered as 
a change of first order. As will he pointed below, 
however, (see Sec. 2) experimental data oh~ained 
by other authors rather favors the hypothesis that 
the phase transformation we are speaking of must 
he regarded as a phase change of second order. 

If one again takes into account that even ~he 
other experimental results quoted by the varwus 
authors differ sharply among themselves (for in­
stance, the thermal behavior of the spontaneous 

polarization, the constant in the Curie-Weiss law, 
the jump in specific heat) and depend most strongly 
on the technique of preparation of the specimens 
and on their chemical purity, the idea suggests it­
self that the character of the phase change of 
which we speak is likewise also determined by these 
factors and was different in the works of the differe~ 
authors. The distinction between the theories 1-6 

is not only in the question of the character of the 
phase change under discussion. These theories 
differ further in that they operate with different 
thermodynamic functions. In Refs. 1, 4 and 5, the 
thermodynamic potential is considered, while in 
Refs. 2 and 6, the free energy is considered. 

Just as in the treatment proposed by Landau 8 

for phase changes of second order, the conditions 
of thermodynamic equilibrium of a system are ob­
tained by considering the conditions for a minimum 
of the appropriate thermodynamic function, written 
down for a thermodynamically nonequili hrium states. 
Insofar as in all the works 1- 6 the behavior of a 
crystal is studied in a given electric field and 
under a given system of stresses (homogeneous), 
the appropriate thermodynamic function is pre­
cisely the thermodynamic potential. Utilization 
of the free energy, however, and application of the 
general formulas of the thermodynamics of quasi­
statistical processes leads practically to the same 
results as are obtained by consideration of the 
thermodynamic optential of nonequilihrium states. 
As lo~g as the stresses (or deformations) are not 
taken into account, this is obvious. Writing down 
nonequilibrium thermodynamic potential in the form 

<P (P _, T) = IJ1 (Pi' T) - "p '. E, where IJ1 (Pi' T) is 

a polynomial in powers of P ., and finding P. from 
the condition of a minimum 1for <P we have the 
equations ' 

a'Y;aPi = E;, i = 1, 2, 3, 

which conform with the thermodynamic identitiesfor 
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quasi-statistical processes, if we take 'I' to be the 
free energy. In the calculation of the elastic 
stresses an analogous situation occurs. We satisfy 
ourselves on this by comparing Refs. 5 and 6. * In 
Ref. 6 there is used an expansion of some charac­
teristic function ell into components of the polariza­
tion vector P. and components of the elastic de­
formation ten~or uik· Although the authors call 
this function the thermodynamic potential, it is more 
proper to restrict this designation to the function 

C = <P + ~Uik aik, 

i, k 

and to regard the function ell + P · E as the free 
energy (for quasi-statistical processes), since it 
complies with the conditions** 

(l) 

The authors maintain that the resolution into com­
ponents u. permits taking account of the effect 
of electro§friction on the properties of a ferroelectric 
to a greater degree than the earlier applied ex­
pansion l of the thermodynamic potential into com­
ponents aik · We cannot agree with such a statement, 
however, since actually the increases in precision 
obtained in Ref. 6 are illusory. In order to be con­
vinced of this, it is sufficient to transform the for­
mulas obtained in Ref. 6. 

Equations (l) and (2), when developed, have the 
form: 

[oc + ~lp; + ~2 (P; + P;) 

+ qnUxx + ql2(Uyy + Uzz)]'2Px 

+ q44 (UxyPy + UxzPz) =Ex; 

[oc + ~1P; + ~2 (P; + P;) 

+ qnUyy + ql2 (Uzz + Uxx)]2Py 

+ q44(UyzPz + UyxPx) = Ey; 

[a:+ ~lp; + ~2 (P;. + P;) + qll Uzz 

(2) 

+ q12 (Ux.~ + Uyy)] 2P -t +q44 (UzxPx + UzyP y) = Ez;. 

*We note that the theories l-6 , apart from the differ­
ence in the thermodynamic functions utilized, further 
differ in the extent of the expansions employed and in 
notation. Thus, in Ref, 2, only one invariant of 6th 
order is utilized while in Ref, 4 all three of such in­
variants are taken into account. 

**!\1ore often, one writes aw;auik = +aik' but owing 

to the arbitrariness of the condition which establishes 
the positiveness of the components a ik , the manner of 

writing employed in Eq. (1) is also feasible. 

(3) 

Solving the system of Eqs. (3) with respect to 

u ik and substituting the obtained expressions into 

Eqs. (2), we obtain a system not essentially dif­
ferent from (1,4) ** in notation and in the signs of 

5 
the a .k. 

In ~rder that the system Eqs. (2) agree with 
Eqs. (l,4)~***(accurately with respect to the 

signs of the a ·k' with regard to which see foot­
note*) it is ne1cessary to assume 

+ 2q~2 (sn + S12)], 

~2 = ~~- ~~ + (s 11 - S12) (qn- ql2)2 

(4) 

- S44q!4 - 2q!4 I c44. 

The coefficients denoted by f3 ' 1 and f3 '2 in Eqs. 
(4) are the (3 1 and (3 2 of Ref. 6. The other symbols 
have the following meaning:* 

(5) 

s12 = c12 / (c12 - Cn) (en+ 2cl2); 
s44 = 2 I C44; 

**Here and further on, the subscript after an equation 
number refers to the reference from which the equation 
is taken, 

***Equation (1.4) in Ret 5 contains misprints, 

*The quantities x. 1 , x.2 , x.3 which figure in Ref, 5, 

appear to correspond, respectively, to the quantities 

tJ 33 , t'J 31 , t'J 15 from Ref. 6. 



190 L.P.KHOLODENKO 

(6) 

x3 = - 2q44 I c44· 

From the agreement of Eqs. (2) with the Eqs. 
(1,4) of Ref. 5 it follows that their consequences, 
examined in Refs. 4 and 5 from one side and in 
Ref. 6 from the other, must likewise also be iden­
tical. As a matter of fact, the formulas for the de­
gree of spontaheous polarization, spontaneous de­
formation, longitudinal and transverse dielectric 
permeability, piezoelectric moduli and for the de­
pendence of the Curie point on pressure, differ, as 

can be seen, only in notation**. 
Thus, contrary to the opinion of the authors 6 , 

the use of the free energy and its resolution into 
components uik is formally equivalent to the use 
of the thermodynamic potential and its resolution 
into components a ik.lt would be in error to discern 
an advantage in the first of these methods in that 
it allows the determination of the structure of the 
coefficients {3 and {3 2• In fact {3 1 and {3 2 must 
be continuous iunctions of temperature, while {3' 
and f3 '2 can change discontinuously at points of 1 

phase transformation, in connection with the dis­
continuous changes of the elastic moduli s "k' 
Herein must be found a reflection of the fa~t that 
the condition for thermodynamic equilibrium for 
given temperature and stresses a. , is the minimum 
of the thermodynamic potential, ah'a not that of 
the free energy. 

Completing the comparison of Refs. 4 and 5 with 
Ref. 6, we note one essential difference in the con­
clusions. In Ref. 5 it is asserted that for a crystal 
with x.L > 0, ~ unidirectio.nal compression (as well 
~s an elongatiOn) must raise the Curie point, while 
m Ref. 6 the opposite is maintained. The origin 
of this disagreement is as such: In Ref. 5 it was 
shown t~at t?e state _of a. crystal compressed along 
the z axis With polanzatlon directed also along 
the z axis does not correspond to the absolute 
minimum of the thermodynamic potential. The 
absolute minimum corresponds to the direction of 
polarization along the x or y axis. Therefore, as 
~deal crystal must transform under compression 
mto the other phase*, with which the increase 
in the Curie point is also associated. This effect 
is not considered in Ref. 6. In a real crystal, the 

**The equation for d 15 , Eq. (20) 6 and the third of 
Eqs. (4.1)4 do not lfgree, apparently due to the inac­
curacy of Eq. (20). 

*Also tetragonal, but with a different direction of the 
vector P. 

turning of the spontaneous polarization vector is 
hindered and therefore one can expect "thermal 
hysteresis". On cooling a previously heated and 
compressed crystal the transition from the non­
ferroelectric phase into the ferroelectric must pro­
ceed at higher temperatures than the reverse transi­
tion in the heating of a crystal compressed along 
an axis which coincides in direction with the vector 
P. 

2. THE DEPENDENCE OF CERTAIN PROPERTIES 
OF A CRYSTAL NEAR A PHASE TRANSFORMATION 

POINT ON THE CHARACTER OF THAT 
TRANSFORMATION 

The question of the properties of a crystal in 
the neighborhood of the phase transformation point 
in the presence of an electric field and, in parti­
cular, the question of the shift of the transforma­
tion point was raised and discussed in Ref. 7. 
This work, however, does not contain a detailed 
examination of the question. 

In the case of a phase transformation of the 
first kind there occurs both a shift in the trans­
formation point and a change in the jump of the 
dielectric permeability at this point. In the case 
of a phase transformation of the second kind, the 
phenomenon bears a different character. The fact 
is, that for a phase transformation of the second 
kind in the absence of a field, changes in crystal 
symmetry come about which are also manifested 
in the appearance of spontaneous polarization. 
The application of a field, however, promotes the 
appearance of polarization and consequently, also 
a change in symmetry at temperatures above the 
Curie point. That particular Curie point ceases 
to be more or less <liscrete in the presence of a 
field and, strictly speaking it is generally meaning­
less to speak of a phase transition in this case 
insofar as all the properties of the crystal vary 
smoothly with temperature*. In particular, the die­
lectric permeability also varies continuously, upon 
which its maximum point is displaced by the applied 
field. We examine both of these cases, considering 
terms of sixth degree in the expansion of q,, 

A. PHASE TRANSITION OF THE FIRST KIND 

The transformation point is determined from the 
condition of the equality of the thermodynamic 
potentials in the nonferroelectric phase I and in 
the ferroelectric phase II. They have the form** 

*This circumstance was pointed out to us by V. L. 
Ginzburg. 

**The notation is the same as in Ref, 4. 
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(7) 

+ 113 ·11Pi- P1E; <I>n = <I>o 

+ ocPiJ + 112 ~1Ph + 113 ·11Ph- PnE. 
Setting in the first phase P 1 = x.E_ = E/2a. and 
restricting ourselves everywhere m the calcula­
tions to terms which contain E no higher than to 
the second power, we get 

(8) 

Comparing Eqs. (7) ~n~ (8) and taki?-g into con­
sideration that P II sahshes the equatwn 

("[IPh + ~1Ph + oc) 2Pn = E, (9) 

we obtain 

(here and below, the index II of P is dropped). 
Assuming P » E, the solution of Eq. (10) can 

be written in the form 

C = - 5l8 rx, (12) 

D =-(51 j128 oc2) V- ~1 I 4oc. 
On the other hand, the solution of Eq. (9) can, 
under the same assumption, be written in the form 

P=Po+AE+B£2, 

A=- 114 (~1P~ + 2ocp· 

(13) 

(14) 

B =- A2 (7@i·P~ + lOoc) / P0 (2~1 pg + 4oc). 

Here P 0 is the solution to Eq. (9) for E = 0: 

(15) 

At the transformation point, the values of P 
determined from Eqs. (ll) and (13) must coincide. 
In the calculation of the shift of the transformation 
point, we restrict ourselves to first order in E. 
Then for the determination of the amount of this 
shift we obtain 

V- 4ocl ~1 + CE = P 0 + AE. (16) 

We denote a. and [3 1 at the transformation point 
forE= 0 by a. and {3 , and the value of P at 
h. . 0 b .0 10 0 

t 1s pomt y r 00 : 

(17) 

Denoting the transformation point by T , and the 
shift of the transformation point by ~T:, expand-

ing v. and {3 1 into series in ~T near a. and R 
c o ~'-'Io 

and restricting ourselves to linear terms, we find 
after substitution of these expansions in Eq. (16) 

b.Tc = E I Poo (~- 2a.:o~1 I ~10), (18) 

where a. and {3 1 are the values of the derivatives 
with respect to T at the point (T) E=O • Thus 
the sign of the shift of the transformation point 
is determined by the sign of the quantity ( a. 
- 2a. 0f3iff3 10). For BaTi0 3 , as numerical esti-

mates show (see below), the second term is con­
siderably smaller in absolute value than the first. 
Consequently the transformation point is shifted 
in the direction of higher temperatures by the field 
and the magnitude of the shift is equal to 

(19) 

We now find the jump of x. at the transformation 
point. First of all, from Eq. (13) we find 

x=(8-l)l4rr=(8Pj8E)r=A+2BE. (20) 

In order to find the value of x. for T = T c on the 
low temperature side it is necessary to expand A 
and B into series in ~T and to substitute the 
value of ~T c from Eq. (18), whereupon it is ob­

viously sufficient for the calculation of B to termi­
nate with terms of zero degree, and for the calcu­
lation of A, with terms linear in ~T c • Performing 
the expansion, we find 

A = - 1 [ 1 + b. T c (2 i._ - 6~1 )] ; 
8oco OCo ~1o (21) 

B=--9-v-~10 
128 ocg 4oc0 • 

Substituting the value of ~T in A, we find from 
c 

Eq. (20) 
1 

xrc = 8ato 
(22) 

E vr- ~10 [ 5 ~d ~10 ] 

+ 4oc~ 4<Xo 16 - Ill: ( lll:o - 2pl I ~10 • 

We find the value of x. on the high temperature side 
from 

Substituting here ~T c from Eq. (18); we get 



192 L.P.KHOLODENKO 

1 
xr =-c 2oc0 

(23) 

From Eqs. (22) and (23) it is seen that applica­
tion of an electric field somewhat reduces the jump 
of x. at the transformation point, which confo~ 
in the absence of a field to the "rule of four" . 

B. PHASE TRANSITION OF THE SECOND KIND 

As was explained above, in the application of 
a field, the phase transition is "washed out':. In 
this case it is meaningless to speak of the dielec­
tric permeability at the transition point, but it is 
expedient to set up the problem of finding P and 
t: for temperatures in the neighborhood of the Curie 
point* 10 • Since in this temperature range one can 
disregard the term in P5 in Eq. (9), the problem 
reduces to the finding of the solution of the 
equation 

~IP3 + r:x.P = E I 2 (24) 

and to finding the susceptibility 

The solution of E_q. (24) can be easily studied by 
means of tables. 9 The dependence of x. on E for 
T =const. is seen immediately from Eq. (25): 

For a fixed temperature x. decreases with an increase· 
in E~.**The detailed dependence x. (E) can be fol­
lowed by the use of the tables, but we are confining 
ourselves only to the observations made. 

The function x. (T) for E=const. is of g~eat in­
terest. 

The function y (q), is shown in Fig. 1 whexe 

*By the Curie point, naturally, is understood the 
temperature which corresponds to the phase transition 
for E=O, i.e., the temperature for which ~0. 
**The positiveness of the denominator in Eq. (26) 

follows from the fact that the solution of Eq. (24) satis-
fies minimum <1>. 
*** The decrease of x. with increase in E has been noted· 

in the literature. 1 

are plotted by use of the tables. 9 From the graph 
it is seen that y has a maximum "'0.21 for q"'l.2. 
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We disregard the temperature dependence of {3 1 • 

Then the relation obtained can be written in the 
following form: 

(27) 

(r:x.)x=xmax ~ 0 75 (~, £2)'/a. 

Thus, application of a field displaces the point of 
maximum x. into the region of higher temperatures, 
whereupon this displacement is proportional to 
E 213 · while the maximum value ofx. is inversely 
proportional to E 213 • If we denote the amount 
of the s?ift of temperature which corresponds to 
the maximum, by ft..T=T -T and· assume for 

max c 
ex. a linear dependence on temperature, =u,. (T -T ) 

c ' we can get from Eq. (27) 

Xmax L':!..T = const ~ 0.25 I de. 
(28) 

With {3 1 temperature dependent, these simple 
relations no longer hold. In this case however, it 
is not difficult to calculate the function x. (T) for 
£=constant by means of the tables. In Fig. 2 
several curves for various values of E are shown. 
In their construction, a linear dependence of o:. 
and {3 1 on temperature was assumed*: 

*Th.e value of the constant in 0:. is known from Ref. 10. 
As regards the coefficient in {3 , using the numbers 

' 1 
given, a satisfactory agreement of several theoretical 
formulas4 with the experimental results 11 was suc­
cessfully obtained, 
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The curves in Fig. 2, in their qualitative shape, 
are very close to the experimental curves obtained 
in Ref. 12. In any event, it appears very probable 
that these latter curves can he interpreted only 

regarding the phase change as a transition of the 
second kind. Unfortunately, a quantitative com­
parison is not possible since the curves of Ref. 
12 were obtained for pol ycrystals and also since this 
work does not contain a sufficiently complete des­
cription of the properties of the specimens studied. 

3. INDUCED PIEZOEFFECT 

In the neighborhood of the Curie point, a crystal 
in which a phase transformation of the second kind 
occurs must he "friable", i.e., very compliant with 
respect to external influences. One can expect that 
one of the manifestations of this friability should 
he an effect where a cry~tal which, at a given tern­
perature, does not have piezoelectric properties; 
acquires them upon application of an electric 
field. We shall call such an effect an induced 
piezoeffect. We maintain the same designation also 
for the more general case when a crystal, before the 
application of an electric field, po~sesses a piezo-

effect characterized by a certain matrix of piezo­
moduli and application of a field leads to the 
emergence of new piezomoduli (and to the modifi­
cation of the old ones). 

The phenomenon of induced piezoeffect should 
also he observed for a BaTiO 3 crystal near the 

Curie point, both above and below this point. 
Let the stress component a , in the presence 

kl 
of the electric field component E . , give rise to 

J 
the appearance of the induced polarization 

(P;)ind = Cifkl akz E1. 

We shall call the coefficients C ijkl (symmetri­

cal in the indices k,l ) the induced piezomoduli. 
They are easy to find by use of the formulas of 
Ref. 5, where the components of the polarizahility 
tensor x. . . in the presence of elastic stresses ,, 
a kl are calculated. In particular 

In actuality, however, the calculation of the induced 
piezomoduli according to the formulas of Ref. 5 
still does not give correct expressions for the 
induced piezomoduli, since in the expansion of the 
thermodynamic potential used in Ref. 5,certain tenns 
which play an essential role in the investigation 
of the question were not considered. On taking 
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them into consideration the thermodynamic poten­
tial of a crystal with cubic symmetry assumes the 
form: 

(29) 

- (PxE.n + P yE y1 + EZlP z) 

- 812 ( crn 0"22 + 0"220"33 + 0 33°11) 
I 

where the notation 

is used. Here 8 1 , 8 2 and 8 3 are the coeffi­

cients with the invariants not treated in Ref. 5: 
The remaining notation agrees with that used m 

Ref. 5. . . f 
The necessary conditions for a mmmmm o 

<I> have the form: 
(31) 

= E.n + 2x3 (cr12Py + 0"31Pz) 

+ 2a3 (cr1~Ey + cr31Ez) 

etc. In order to determine the induced piezomoduli 
from this, it is convenient to calculate them one 
after another. Thus, for the calculation of C 

1111 
we set a 11 f. 0, and all the remaining components 

a kl equal to zero and E f. 0, E = E = 0. 
X Y Z 

We examine, at first, temperatures above and not 
too close to the Curie point. Then it is possible 
to assume 

Py=Pz=O. 

Substituting this in Eq. (31) and taking into 
consideration that x, 11 = 112 u., we find, disre­
garding terms of higher order 

(32) 

The remaining piezomoduli are calculated in an 
analogous way. 

The results obtained can be formulated in the 
form of the following rules. 

1. Only those induced piezomoduli are different 
from zero for which all indices consist of repeated 
numbers. Piezomoduli, the indices of which con­
tain some number only once, are equal to zero. 

2. The , nonzero induced pie zomod-ufi are ex­
pressed by a two term formula, the first term of 
which is proportional to 11 a. , and the second pro­
portional to 11 a.. 2 

3. The coefficients with 1la. and llu. 2 for the 
moduli corresponding to elongations (compressions), 
are equal to 8 1 I 2 and x, 1 I 2 respectively ,\when the 

elongation (compression) coincides with !the direction 
of the electric field, and are equal to 82 12 and 
~t2 12, respectively when the elongation (compres-

sion) is perpendicular to the direction of the electric 
field. 

4. The coefficients with 1lo:. and 1lo:. 2 for the 
moduli corresponding to shear are equal to 8 3 I 2 

and x, 3 I 4, respectively. 

We now consider temperatures below the Curie 
point. The calculation of the induced piezomoduli 
is carried out analogously to the case where 
T > T c • The difference is merely in that the 

general piezomoduliji~l are now not equal to 

zero and a spontaneous polarization P 0 exists. 

With nonzero components E j and akl and the 

choice of the direction of spontaneous polarization 
along the z axis, there should be substituted in 
Eq. (31): 

and analogous expressions for P and P . The 
y z 

results of the calculation reduce to the following: 
l) as in the case for T> T , all of the induced 

c 
piezomoduli whose indices contain even a single 
nonrepeated number are equal to zero. 2) Replace­
ment of the index l by 2, and vice versa, in the first 
and second pair of indices does not change the 
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value of the modulus. The essentially different, 
nonzero, induced piezomoduli are equal to 

+ (~1 / 2p~ oc2) [x1~1- X2 (~1 + ~2)]; 
C1122 =-(~~I 2o:~2) (32 + x2 I o:); 

(34) 

In conclusion we note that there must also exist 
an effect inverse to the induced piezoeffect. From 
the thermodynamic formula* 

there follows the well-known relation 

(36) 

It contains in itself, along with the inverse piezo­
effect also the inverse induced piezoeffect. Sub­
stituting in Eq. (36) 

*Here, we keep in mind the equilibrium thermodynamic 
potential. 

we find 

Thus the effect inverse to the induced piezoeffect 
is electrostriction and the coefficients C ijkl are 

the coefficients of electrostriction. 6 

For deformations of elongation (compression) 
there correspond k=l; but then, also i=j (otherwise 

cijkl = oY. Consequently, such deformations 

depend quadratically on the component of field 
intensity. To shear deformations there correspond 
k f- l; but then, i=k and j=l. Consequently, 
shear deformations arise only in the presence of 
two components. In the general case when the direc­
tions of the vectors P 0 and E make an arbitrary 

angle, both extension (compression) and shear 
occur. 
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