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A method is considered for obtainingnonstationary solutions of Boltzmann's kinetic 
equation. This method is free from the ~imitations of the Chapman-Enskog method. By 
way of an example, the dispersion of plane sound waves in a monatomic gas is con­
sidered. 

1' IN recent times the most widely used method 
· _ • of solution of the Boltzmann equation has been 
the method of Chapman-Enskog 1. However, this 
method is not applicable for a series of problems. 
Let us consider, for example, one such problem -­
the problem of the dispersion of plane sound waves 
in a monatomic gas without consideration of the 
internal degrees of freedom of the atoms. Let the 
frequency of vibration of the external source be 
sufficiently low in comparison with the "character-
istic frequency" of the gas, i.e., in comparison 
with the mean frequency of atomic collisions. Such 
a problem can be solved by making use of the equa­
tions of Navier-Stokes and Burnett2, i.e., by making 
use of different approximations than those of the 
Chapman-Enskog method. If the frequency of vibra­
tion of the external source is comparable with or 
larger than the "characteristic frequency" of the 
gas, then these approximations lose their meaning. 
Actually, we use as the small parameter of the 
method of successive approximation employed in 
obtaining the equations of Navier-Stokes, Burnett, 
the ratio !:+.t / !:+.t, where l:+.t is a characteristic 
time interval for the process under consideration, 

for example, the period of vibration, f:+.tp is the re­
laxation time of the gas. Thus we have as the con­
dition of applicability of the Chapman-Enskog 
method the relation 

(1) 

Another method is necessary, consequently, to 
obtain a solution differing widely from the quasi­
equilibrium solution of the Boltzmann equation. 
Such a possibility is given by the method of 
"moments'' (see, for example, Ref. 3). 

Let us formulate a modification of this method. 
We use as the zeroth approximation the stationary 
solution of the Boltzmann equation. Then the first 
approximation gives the deviation of the density, 
velocity and temperature from the stationary dis­
tribution, and also the corresponding viscous force 
and heat flow. As conditions for the appication of 
this method of small perturbations we have the 
relations 

s. 
-'-<I 
PoC~ 

(2) 
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where Po• 0 0 = kT 0= mc 0 
2 are, respectively, the 

particle density and temperature in the stationary 
state; m is the mass of an atom of the gas; k is 
the Boltzmann constant; l'!.p, !!.ui, 1'!.0, Pij' Si 

are the deviations of the density, velocity and tem­
perature from the stationary state and also the 
v_iscosity tensor and the heat flow (first approxima­
twn). 

Thus we have the kinetic equation of Boltzmann: 

(3) 

where F 8 is the Boltzmann collision integral, V 
is the potential of the external field. We set 

f (r, v, t) = fo (r, v) + fi(r, v, t) + ... , 
V(r, t) = V0 (r) + Vdr, t) + .... (4) 

Then, substituting (4) in (3), we get a system of 
equations of successive approximations of the de­
scribed method: 

The normalization conditions for the function f are 
written in the following way: 

(6) 

0· · = _!_ (' mV·V· fdv· 
Lf p 3 L I . ' 

From Eqs. (4) and (6) there stems the possibility of 
the following normalization for the functions of the 
different approximations: 

p0 (r) = ~ f0 dv; l'!.p(r, t) = ~ f1 dv;... (7) 

p0 Uoi = ~Vi f 0dv; Uoi l'!.p + Po !!.ui = ~ Vi f 1dv, ... 

with similar relations for El, IIi·, S .. 
In many problems (in particular, 'in the problem 

noted above on the propagation of sound waves) 
we can set V o = 0. Then the equation of zeroth 
approximation (5), with account of (7), has the well­
known solutions of Maxwell: 

where p 0 , c 0 are constants, u0 . =0. 
We now write the equation ot the first approxima­

tion of (5) , introducing dimensionless functions 
and variables: 

go(§)= (2rr)-•j2e-1;'/2; fo (v) == PoC;;-3 go(§); 
fi (r, v, t) = p0 c03 gi(r, §, t); !,; = v f c0 • (9) 

We shall seek the solution of (lO) in the form of an 

expansion in H~rmite polynomials: 
00 

g g "" "" .!_ a.:(nl. H(n). 
1= 0~ ~ n! L,j .... L,j, .. ., (ll) 

n=O i, i, ... 

where the coefficients o:. are unknown functions, 
r, t, }] ~~) are theorthonormal Hermite polynomials, 
f ,,,, ... 
or example, 

H (O) 1 . H(2) " " ~ . 
= , i, i = ~i 'i- 0 ii• 

Ht1> = ~i; H~~li. k = ~i ~i ~k- ~i oik- ~ioik- ~k oii· 

Because of the orthonormality of these polynomials, 
we have the relation 

Here the indices i, j, ... are omitted. 
Substituting (ll) in (10), we obtain a system of 

linear differential equations for the unknown func-. 
tions o. (m). This same system can be obtained 
by multiplying Eq. (10) by lJ(m) and integrating 

over g. We then get 

(' H<ml aKt d!! + c (' ". H<ml aKJ dr: (13) 
~ at ':> 0 .l <;, ax. ~ 

' 

We get for the first term in Eq. (13) [keeping Eq. 
(12) in mind] 

(' (m) af!'t dl:- ar~.<m) 
.l H at '=' - ----at · (14) 

To transform the second term in Eq. (13), we make 
use of relations of the form 

* In view of the fact that the term which takes into 
account the external field is not essential in what fol­
lows, it is omitted. 
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HPJ H(m) = H~m+Il + 6; H(m-1). 

Using Eqs. (11), (12) and (15), we get 

a ~ H~~> H<m> g d= Co iJx. 1 1 ':> 
I 

iJ { (m+1) + " (m-1)} = c0 - ct.; O;ct. " 
OX; 

(15) 

(16) 

We can write the right hand side of Eq. (13) in 
the form 

00 

~ H~~J. ... FB (gog I) d~ =Co,Po ~ 
n=2 

00 2-rt 
y<n> - j I: I: jl d • (n) ' '· J, ... - '=' 1- '=' J 8 8) drp{H;, 1 • ... (§1) 

0 0 

if we apply Eq. (ll) and the laws of conservation 
of energy and momentum. The integrals Y. (~) ,,, , ... 
were computed (see, for example, Ref. 3), where­
upon we obtained 

Ylj> = .£ {w2B;J- 3w; WJ}, 
Co 

Y~jk = 2c {w2 [Wlki3if + W1ou,+ W;i31k] 
·Co 

where 
00 

C = c0 2;.:~ ~ 8ds sin2 6 cos2 6, 
0 

Further calculations are carried out only for 
Maxwell molecules with interaction action <P(r) 
= br-4. Then 

c = o.684tY 8b 1m. 
(19) 

Further simple calculations lead to the following 
values of the integrals in Eq. (17): 

\ d§1 g0 (§1) YW = ~ {o;1 Sp HW- 3HW}; • (20) 
) Co 

~ ds1g0 <s~> Y\% 
c {9H(3) HC3l " H<3> " H(3l " } = 2C ijk- i O;k- j O;k- k O;j , 

0 

h f l H (3) H (3) H (3) were, orexampe, 1 = 111 + 122 
+ H (3) 

133 • 
Now we can write down for the unknown functions 

o:.(m) a set of differential equations which are 
equivalent to the Boltzmann equation of the first 
o:~pproximation (lO). Actually, taking into account 
Eqs. (13), (14), (16), (17) and (20), we get, with 
accuracy to terms of fourth order: 

" (m) a 
u_oc_ + c - {cx.~+I + o-cx.<m-1)} 

i}t 0 ax i ' ' 

X I d'" H<m> [9H<3> H< 3b H<3>" H<3 >o" · ·] }· J ~gO ijk - i Ojk- j Oik - k tJ 

We describe these equations in more detail for the 
very simple case of one dimensional flow. Here 1 we 

f . f" ff" . t \n) choose as unknown unctions 1ve coe ICten s o:. 
from (11): 

~<o) cx.(l) cx.(2) cx.(2) = cx.(2) cx.C3) = cx.(3) = cx.(3). (22) 
"" ' 1 ' 11 ' 22 33 ' 111 122 133 

The physical meaning of these functi_ons is made. 
clear from conditions (6) and (7), whtch, along w1th 
Eq. (12), give 

cx.<OJ = ~pI Po• cx.)ll = ~U; I Co, 

Sp cx.W = ~8 I Po c~; 

112 (ex.;!+ CX.Ji) =Pi! I Poe~; 
ex.(~)= 3S; I 5p0C30 - 3~p I Po; 
'" 

(TI;i = P + Pi! + · · ·; 
S; = S~ + S; + ... ; S<?> = 0). 

' 
Keeping in mind (22) and ( 12), we get from {21) the 
following system: 

aoc<o> iJoc(l) aoc<l) a ( (0)) 0. at+ Co (fX = 0; at +Co ax Xu +ct. = ·; 

a~: 1 + c0 :x (2cx.(l) + cx.< 3l) = 2Cpo ( CX.22- ocu); 

iJoc22 a 1 (3) c ( )• 
7ft + Co ax 3 ex. = Po CX.n - cx.22 ' 

aoc< 3 > a 3 2C (3) --+ Co -a -5 ( 3cx.u + 2cx.22) = - Poet. at x 

(23) 
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by setting H (m) successively equal to 

H(m) = H<0 >; Hi1 >; Hi~; 

H<2> + H<2>. H<a> + H<a> + H<·1> 22 33 ' 111 122 133• 

(The indices which are superfluous for the one di­
mensional case have been omitted.) 

The system (23) determines the functions a.<n\f the 
corresponding initial and boundary conditions are given. 
A solution of the Boltzmann equation in the form 
(ll) is found by the same approximation. This 
solution will no longer be limited by the con clition 
(l). Thus the method considered here of small per­
turbations is free from the limitation of the Chapman 
and Enskog method. 

2. As an example, let us consider the problem 
of the dispersion of plane sound waves in a mona­
tomic gas without regard to internal degrees of 
freedom of the gas atoms. This problem has been 
considered by a number of authors (see Refs. 4-7). 
The starting point for these researches is the Burnett 
equation 2 • Thus in these researches there were 
analyzed only the quasi-equilibrium solutions, the 
limitation of which follows from the requirement 
( l) of the method of Chapman-Enskog. 

We consider this problem, not limiting ourselves 
to quasi-equilibrium solutions. For this purpose, 
we employ the system of equations (23), which is 
suitable for the one dimensional flow of gas. We 
write the corresponding system for the Fourier com­
ponents of the unknown functions o. (n) from (23) 
as 

Ua.(O) + oc(l) = 0, Uoc<I) + oc11 + oc<o) = 0; (24) 
U ocu + 2oc(I) + oc<a) = - i2 U 0 ( oc22 - oc11); 

Uoc22 +I Ia oc(3) =- iU o (ocn- oc22); 
Uoc<a) + 91socn + 61soc22 = i2Uooc(3), 

Here U = w/kc 0, U0 = wo/kc 0 , w0 = cp 0 ; o.ijn> 
denotes the Fourier components of the corresponding 
functions from (23), w is the vibration frequency, 
k the wave vector. 

Equating the determinant of this system to zero, 
we obtain the necessary dispersion equation 

- 2Vgu (3U2 - 5) = 0. (25) 

We now assume that w is a given quantity and in­
troduce the variable p. = w/w 0 • 

The nontrivial solutions of this equation are 

u = +[ 2~(-B+ VB 2 - 4AD>t· 
A = p.2 - 6- i5p., 

B=l0- 26l 5 p.2 +il6p., D=3p.2-i5p.. (26) 

We write them in the form* 

U + = oc+ + i~+' U _ = oc_ + i~-· 
Introducing the phase velocity c and the absorption 
coefficient x. with the aid of the formulas 

c = wIRe k, x = Im k, 

we finally obtain the solution of the dispersion 
equation for dimensionless velocity and absorption: 

c~ = c± I c0 = cp1 (p.); x~ = x± c0 I w0 = cp2 (p.), 

?I (p.) = [(oc±)2 + (~±)2J / oc±; 

?2 (p.) = P.~± I [(oc±)2 + (~±)2]. (27) 

Numerical evaluation leads to the results plotted 
in the Figure. 

z 
'J 

2 3 1/ 

.Curve 1-c' 2-c' 3-x' 4-x~ _, +' +' 

To evaluate the results we need approximate 
formulas for the case p. << l: 

Jl 

(28) 

c' = V 5l 3 (I+ 0.1194p.2); c'+ = Y~(l-0.3500p.), 
x~ = 0.1807 p.2; x'+ = VP:(l-0.3500 p.). 

Thus the dispersion equation (25) has two solu­
tions for the velocity and attenuation of small per­
turbations of the neutral gas. 

* The sign ± in front of the general square root has 
been omitted, since the choice of this sign is connected 
with the choice of the direction of propagation of the 
wave. 
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Let us consider the solution c' , x.' (see the 
Figure) . As w-> 0, it undergoes transition into 
expressions known from the theory of continuous 
media: c '_ = y'5'73':" :x. '_ = 0. Hence we obtain the 
usual expression .c = (5RT /3M) l/ 2 for the sound 

velocity in a monatomic gas. 
The solution just obtained contains in it the 

higher approximations of the Chapman-Enskog 
method (for example) the second approximation of 

• 

Stokes-Navier, the third approximation of Burnett). 
In order to he convinced of this, we compare our 
results with the corresponding theoretical 4 -7 and 

experimental results 7 (see the Table). Thus the 
solution actually contains in it, as a special case, 
the various hydrodynamic approximations. The 
connection assumed in hydrodynamics between the 
pressure and the velocity gradient is not assumed 
in our method hut is obtained in a special case 
(w -> o): . 

Comparison of Theoretical values of sound velocity with Experimental 
(for argon at 0° and sound velocity w/2TT = 970.68 Kc; 

a= 308.23 m/sec. · 

Values of c/a (m/sec). 
pressure p 

in em Hg experimental I 
according to I according to I according to 

Eq. (27). N anier-Stokes Burnett 

78.40 1 
47.10 1 
22,30 1 
13.50 1 
9.10 1.002 
4.30 1.006 
iL30 1.008 
2.45 1.008 
1.80 1.016 
1.50 1.028 
0.65 1,058 
0.34 1.139 
0.22 1.259 

Increase in the vibration frequency leads to a 
comparatively large increase in the sound propaga­
tion velocity and to a simultaneous increase in the 
absorption . For sufficiently high frequencies 
(w ~ 5w ), l/ x. "" 2.\ (.\ = mean free path length). 
Consequ~ntly, this solution gives an analytic de­
scription of the Lehedev erfect8which consists in 
the presence of a frequency limit for the propaga­
tion of ultrasound in neutral gases. This limit is 
a function of the gas density: the lower the gas 
density, the lower the frequencies of vibration that 
cannot he propagated in the gas. 

Let us consider the second solution c. The 
fact of two solutions has already been pointed out 
in the literature (see, for example, Ref. 3). How­
ever, in rarefied gases, only a single wave is ob­
served for small disturbances. This corresponds 
to the form of the solution c + 1 , x. '+. Actually, the 
solution c /,.x. '+ does not give propagating waves 
in practice: c 1 + "' x. '+ and the damping x. '+ for 
W->0 tends to zero as (w/ w ) Y., while x.' tends to 

0 -

1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1 
1 1 1.001 
1.001 1.001 1.002 
1.001 1.002 1.003 
1.002 1.002 1,005 
1.003 1.005 1,007 
1. 019 1.028 1.043 
1.054 1.103 1.144 
1.139 1.246 '1.281 

2 
zero as (w/w 0 ) • 

In conclusion I express my gratitude to Acade­
mician N. N. Bogoliuhov for his discussion of the 
results. 
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