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In an electrodrnamic model where the Dirac y matrices are replaced by c-numbers, there 
is no vacuum po arization and the equations for the Green's function of an electron in an 
external field can he solved by quadratures, The Green's function with radiative corrections 
is then easily obtained by functional integration. The expression obtained for the Green's 
function after renormalization is manifestly analytic and has no infinities. 

l. INTRODUCTION 

S EVERAL papers l- 8 have recently appeared 
on functional integration as applied to quan­

tum field theory. This method is of interest from 
two points of view: first, the mathematical ap­
paratus seems the most adequate way of describing 
a field as a system with an infinite number of de­
grees of freedom, so that within the mathematical 
scheme one can obtain solutions of the field equa­
tions in closed form: while secondly the functional 
integration method does not assume the coupling 
constant to be small, so that one may make other 
approximations than those founded on perturbation 
theory. 

However, although it has been possible to ex­
press the fundamental quantities in the theory as 
functional integrals, the method has not been able 
to produce concrete physical results because so 
far only the gaussian functional could be integrated. 

From a methodological point of view, it is in­
teresting at this stage to consider several simple 
models where the integration can be carried out. 
In Refs. l and 8, functional integration methods 
were applied to the interaction between an infinitely 
heavy nucleon and a scalar meson field, Ref. l 
considering a neutral and Re£.8 a charged field. 

In the present paper, we consider, as an example 
where the calculations can be carried out in full, the 
the Bloch-Nordsieck model in electrodynamics. As 
is well known, Bloch and Nordsieck proposed to 
avoid the infrared catastrophe in the interaction of 
particles with light at low frequencies by an ap-
proximate method not based on perturbation theory. 
It turned out that their zero order approximation 
was equivalent to replacing.the Dirac y matrices 

by c-numbers ua. 

(l) 

Here 

f 1 for oc=O, 
aac< = 
b \-1 for oc = 1, 2, 3. (2) 

We shall look at this model from the Green's 
function point of view, and start with the representa­
tion, obtained in Ref. 3, for the Green's function 
of an electron as a functional integral depending 
on the Green's function of an electron in a classical 
external field. The integral will be calculated and 
then renormalized in the following sections. 

First note that there is no vacuum polarization 
in this model, so that we may immediately assume 

(3) 

= exp {V 4-.-:e~ dl. ~ dxG (x, x li.A) uA (x)} = 1. 
0 

Formula (3) is the well-known expression for the 
average of the S-matrix in a Fermi vacuum (see, for 
example Ref. 3 ); we use the Feynman notation 
for the scalar product of four-vectors: 

ab = g""aaba = aobo -a·h. 

That there is no vacuum polarization is clear 
from the following considerations. The Green's 
function sc (x-x') for a free electron is deter­
mined in the present case by the first order equa­
tion 

[iu" (ajax")- m] sc (x- x') = - 0 (x- x') 

(4) 

and has one pole, not two as in ordinary electro­
dynamics: 

c ' 1 ~ e-ip(x-x') 
X-X =-- . d. S ( ) (27t)4 m- up -re p (5) 
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Hence Sc ( x-x' )= 0 fort'> t, i.e., this is a 

retarded Green's function. Then, in the matrix 
element corresponding to a diagram of the type 

one of the electron lines will correspond to sc 
x (x-x') = 0. Similarly, all more complicated dia­
grams corresponding to vacuum polarization will 
be zero. Physically, the absence of a second pole 
in the Green's function means that there are no 
antiparticles in the theory, and hence that pairs 
cannot he created. Since the contribution of 
closed loops is zero, the photon Green's function 
in this model is identical with its zero order ap­
proximation in the perturbation theory. 

2. GREEN'S FUNCTION FOR AN ELECTRON 
IN AN EXTERNAL FIELD 

In the present case, the Green's function for 
an electron in a given external field is determined 
by the equation 

[iU& (a I ax a.)- -v 4r-eg""Ua.Aa. (x)- m] 

x G (x, x' I A) = - o (x- x'), (6) 

which can he solved by quadratures. To do this, 
we use Fock's proper time method 10 , which in­
volves the formula 

00 

H-I=- i ~ dveiHv-•v. 

0 

For our special case 

H = iu" (a 1 iha.) 

- V~eg"'"'ua.Aa. (x)- m, 

(7) 

(8) 

so that the solution of (8) can he written symboli­
cally 

00 

G (x, x' I A)= i ~ d'l exp {iv (iuo. a~" (9) 
0 

- Y 4r: eg""'ua.Ax (x) - m + is)} o (x- x'). 

Introducing a new unknown function 

U (v) = exp { iv (iua. a:" (lO) 

- y 4r: eg""u"A" (x)- m + is)} o (x- x'), 

we find that it satisfies the differential equation 

(ll) 

with the initial condition with respect to the proper 
time parameter v 

U (0) =a (x- x'). 
(12) 

Taking the Fourier transform of the o function 

o (x- x') = (2r=t4 ~ e-ip(x-x') dp 

we seek.a solution of (ll) in the form 
• 

U (v) = (2r=t4 ~ exp {S (p, v)} dp. 

(13) 

(14) 

The functionS ( p, v) satisfies the equation 

. as . as 1 14- A ( ) . - t-a = tua. -a-- v ~ eg"-"ua. "' x -m + tz 
v ~ • 

(15) 
with the initial condition 

S (v; p) lv=o =- ip (x- x'). (·16) 

Finally, the substitution 

S = - ip (x- x') - i (m- up- is) v + R, 

(17) 
leads to the following equation for R 

.aR . aR 11-4 " "" A ( ) (18) -t- =tu"- -a--v ;r:eg ua. a. x av x(f. 

and the initial condition 

R (0) = o. {19) 

Equation (18), with the initial condition (19), is 
easily solved by Fourier transforms. The result 
is 
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v 

R = - i V 4rc e \ dkuA (k) e- ikx\ dv' eiukv' (20) 
(2rc)4 j .\ ' 

0 -oc-

G (x, x' I A)= i \ dv 
0 

(21) 

exp {- ip (x- x')- i (m- up- is) v + R (v/ A)}. 

3. THE ELECTRON GREEN'S FUNCTION WITH 
RADIATIVE CORRECTIONS 

As was shown in Ref. 3, the Green's function 
with radiative corrections can be written as the 
ratio of two functional integrals: 

G (x-x') 

.\ 0 (x, x' I A) exp {i _\ LJdx} < S>F.,M 

S exp { iS£Jdx} < S >F" aA 

(22) 

Here f L t dx is the action function for an electro­

magnetic field and can be written 

~L~dx (23) 

= 2 7;;)4 ~ k, (k) De-, (k, k') Ac, (k') dkdk', 

where 

DC (k, k') =DC (k) 0 (k + k'), 
(24) 

DC ( k) = - 1 I ( k2 + is) . 

In our case we have the important simpification 

<S>F =1. 
0 

Hence we obtain 

G (x -x') (25) 

= c-1 ~ G (x, x' /A) exp {i ~ Lj dx} ~A, 

where the denominator of formula .(22), which is a 
constant, has been denoted by c • From the form • 
of G ( x,x' I A ) h is clear that in order to cal­
culate (25) it is sufficient to find 

~ exp { R(·1l A) }ei S Ljdx oA (26) 

= ~ exp {- (2:.)' ~ ga" Fa (k) Ac, (k) dk 

+ 2 (~rc)4 ~ g'"' A .. (k) De-• (k, k') A .. (k') dk dk'} OA, 

where for convenience we have written 

., 
,p" (k) = V 4rr eua e-ilix ~ dv' eiukv'; (27) 

0 

The functional integral (25) is of the gaussian type 
and can easily be calculated with the help of the 
transformation 

A a (k) = A~ (k) + ~ F" (k')Dc (k, k') dk''. (28) 

With this substitution the integral takes the form 

= cexp{- 2(;rc)4 

~ gaa Fa (k) De (k, k') Fa (k') dkdk' } . 

Then, using (25) and (27), we obtain 

(30) 

{ 
ie2 

= c exp - 2 (2rc)s 

v v 

~ dkDc (k) ~ d•Jle-iukv, ~ dv2e-iukv,}. 
0 0 

Noting now that the infinite constant c cancels 
in (25), we finally obtain the following expression 
for the Green's function 

G (x- x') = i ~ dv exp {- ip (x- x') 
0 

-i(m-up-ic)•i+f(v)}, (31) 

where 

f (v) (32) 

{ ie2 \ ~ ( } = exp - 2 (2rc)3 J dkDc (k).) dvle-iukv, .\ dv2 eiukv• . 
0 0 

Since D c ( k) is even with respect to k the 
last formula, (32), can be put in the form ' 

v· "J 

f (v) = exp {- (~;)3 ~ dkDc (k) ~ dv1 \ dv2eiukv,}, 
0 0 

(33) 
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In momentum space, the Green's function becomes 

(34) 

G (p) = i ~ d--1exp {i (up- m + iz)v + f (v)}. 
0 

Taking, then, u=p/jpj, the Green's function is 

00 

G (p) = i ~ dv exp {i (I p j- m + iz) v +f (v)}. 
0 

4. RENORMALIZATION OF THE GREEN'S 
FUNCTION 

(35) 

There are infinities in the expression we have 
obtained for the Green's function. We use the 
Pauli-Villars regularization method 11 , with one 
auxiliary mass M, to renormalize. To deal with 
the infrared catastrophe we introduce also the 
photon "mass" ,\ . Then we adopt the photon 
Green's function 

(36) 

De(/?)= (1,2- k2- izfl- (M2- k2- is fl. 

At the end of the calculation we must go to the 
limits M _, CXJ and ,\ --+0. Hence in carrying out the 
integration (33), it is sufficient to obtain asym­
ptotic values for ,\ "-' 0. 

Carrying out the integration on v 1 and v 2 , we 

obtain for f ( v ) the expression 

f (v) (37) 

e2 ~ ( · 1 1 ) 1 + 'I -(2 )3 dk "A'' k'' · - M 2 k 2 • -k 7t "-"-IE - -lE U 

ie2 \ ( 1 1 ) eiukv 

+ (2n;)3 J dk )..2 -k2 - ic. - M"- k2 - ic. (uk)2 · 

The last integral remains finite as M -w, as does 
the second for ,\ --+0, so in these last two we can 
go to the indicated limits immediately. All the 
integrals can be calculated easily using the formula 

00 

x-1 = - i ~ eix~-•~diX 
0 

(38) 

and integrating first over k , then over the auxiliary 
variable o:. • The result is 

f (v) = - (ie2j2) Mv 

+ (e2 /,-:)In (M ji.) +~In (vi.). (39) 
7t 

We note that A cancels out and the result is finite 
at A= 0. 

The first term, proportional to iv , gives the 
radiative correction to the mass of .the electron, 
and diverges linearly as M--+ CXJ . It can be included 
in the effective mffis of the electron, the renor­
malized mass being 

m1 = m + (e2 j2,-:) M. (40) 

"-' 

We write that part, f ( v ), off ( v ) which 
remains after mass renormalization in the form 

The term independent of v diverges logarithmically 
as M --+CXJ , and determines the renommlization 
constant for the Green's function 

(42) 

Hence renormalization has removed all infinities 
from the theory and we obtain the following renor­
malized Green's function G 1 (p ): 

G1 (p) = z-1G (p), (43) 

(44) 
00 

= i (md'/1t ~ dv exp {i (I p 1- m 1 +is) v} ve'j1t. 
0 

To evaluate the integral we make the substitution 

x = j m1 -I p II v, (45) 

Neglecting terms of order e 2 / 77, we finally obtain 

G1 (p) = (ml -I PI t 1ll -I PI I mll-e'l1t. (46)* 

In conclusion, I should like to express my deep 
gratitude to N. N. Bogoliubov, under whose guidance 
the present work w.as done. 

*Selection of the coupling D~ f3 in transverse form 

would have led to a factor 3/2 in the exponent of (46). 
This can be shown with the aid of a gauge transformation. 
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A method is considered for obtainingnonstationary solutions of Boltzmann's kinetic 
equation. This method is free from the ~imitations of the Chapman-Enskog method. By 
way of an example, the dispersion of plane sound waves in a monatomic gas is con­
sidered. 

1' IN recent times the most widely used method 
· _ • of solution of the Boltzmann equation has been 
the method of Chapman-Enskog 1. However, this 
method is not applicable for a series of problems. 
Let us consider, for example, one such problem -­
the problem of the dispersion of plane sound waves 
in a monatomic gas without consideration of the 
internal degrees of freedom of the atoms. Let the 
frequency of vibration of the external source be 
sufficiently low in comparison with the "character-
istic frequency" of the gas, i.e., in comparison 
with the mean frequency of atomic collisions. Such 
a problem can be solved by making use of the equa­
tions of Navier-Stokes and Burnett2, i.e., by making 
use of different approximations than those of the 
Chapman-Enskog method. If the frequency of vibra­
tion of the external source is comparable with or 
larger than the "characteristic frequency" of the 
gas, then these approximations lose their meaning. 
Actually, we use as the small parameter of the 
method of successive approximation employed in 
obtaining the equations of Navier-Stokes, Burnett, 
the ratio !:+.t / !:+.t, where l:+.t is a characteristic 
time interval for the process under consideration, 

for example, the period of vibration, f:+.tp is the re­
laxation time of the gas. Thus we have as the con­
dition of applicability of the Chapman-Enskog 
method the relation 

(1) 

Another method is necessary, consequently, to 
obtain a solution differing widely from the quasi­
equilibrium solution of the Boltzmann equation. 
Such a possibility is given by the method of 
"moments'' (see, for example, Ref. 3). 

Let us formulate a modification of this method. 
We use as the zeroth approximation the stationary 
solution of the Boltzmann equation. Then the first 
approximation gives the deviation of the density, 
velocity and temperature from the stationary dis­
tribution, and also the corresponding viscous force 
and heat flow. As conditions for the appication of 
this method of small perturbations we have the 
relations 

s. 
-'-<I 
PoC~ 

(2) 


