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The theory of systems of interacting particles with noncentral interaction law is con
sidered on the basis of Bogoliubov's method, I Successive approximations are obtained for 
the distribution functions in the two simplest cases: for a,.gas consisting of axially sym
metric diatomic neutral molecules and for a dipole crystal Lprovided the condition (32)holds], 

where L ij is the interaction potential and T HE theory of systems with a noncentral in
teraction law between the particles is charac

terized by a number of special difficulties; however, 
in certain cases it can be constructed rather easily 
on the basis of Bogoliubov's method. 

QN = ~ exp (-UN I 8) dq1 ... dQN; 8 = kT. 

Let us consider the simplest possible case of a 
classical system, in which the interaction law be
tween the particles differs only slightly from the 
law of central short range forces. Such is the case 
for systems consisting of neutral diatomic molecules 
when their weak orientation interaction with each 
other is taken into account. 2 

We introduce the distribution function F so nors 
malized that 

(l) 

determines the probability of the location of the 
centers of mass of a chosen group of s molecules in 
the respective volumes dq , ... , dq for orien-

1 s 
tations of these molecules determined by the ele
ments of solid angle df! 1 , ••• , df! 5 , where 

q 1 , ••• , ~ are vectors determining the position 

of the centers of mass of the molecules and the 
angles 1J 1, cp1 .. • 1} 5 , cp5 determine the orientation of 
the axes of the molecules relative to the chosen system 
of coordinates. The distribution functions thus determined 
characterize a system consisting of identical, sym-
metric diatomic molecules and satisfy the equality 

Fs (q1 ... Qs; {th 'f'1 ... {ts, Cf's) 

= (4r.V) 8 ~ DNdQs+I ... dqNdQs+I .. · dD.N; 

DN (q1, ... QN; &1, rp1, ... &N, Cf'N) 

= Q;\?exp (-UN /8) 

is a Gibb's configuration function and 

u N = ~ Lij (qi, qi; &i, Cf'i; &j, Cf'i), 
H:;;i<i<N 

Beginning with the identities 

avN;aq~ + (DN/8) au N/aq~ = o, 
aDNja&~ + (DN/8) aU N/a&~ = 0, 

we get to the equations 

(!X.= 1,2,3), 

(!X.=l,2), 

aFS 1 aus I 1 \\ dL1 s+1 d" 
aq~ + El aq~ F s I 47tElV jj a~~ F s+Idqs+I .lo~s+l 

= 0, !X.= 1' 2, 3. 

aFS 1 aus F 
a .a" + 8 a&" s 

1 1 
(2) 

(v=V /N ). We limit ourselves here to a considera
tion of an interaction potential of the following 
type: 

(3) 

where t1) is the interaction potential which corre
sponds to short range central forces and t/1 1, 2 are 
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terms taking into account the dependence of the 
interaction on the orientation of the particles. Al
though we have written explicitly only the dependence 
of t/1 1 2 on the pairs of variables i} , cp and 

• l l 

(8) 

i = 0, 1, ... 

t9 2 , cp 2 which determine the orientation of the The corresponding systems of equations in this 

axes of the molecules in space, this function actually case are described in the following way: 
depends on the pairs of variables t9 cp 

12 ' 12 apOO 1 aUJ apOO 
also. These latter determine the orientation of the __ s + _ __ s F~0 = 0 --8 = 0 (Sa) 

line of centers of the pair of particles under con
sideration; .\ denotes the parameter whose smallness 
determines the weakness of the orienting effects in 
the system under consideration. 2 

Limiting ourselves to a consideration of systems 
with sufficiently low density, we employ an ex
pansion in powers of the latter: 

(4) 

The corresponding groups of the systems of equa
tions will have the form 

aF~ 1 aUs o 
-+--F-0 a·" ('1a"- s-IJ1 q1 

(1X=l,2,3), 
(S) 

aF~ 1 aus o 
a&"' + 8 a&" Fs = 0 

1 1 
(IX= J, 2); 

aF~ 1 aUs pi _1_. 
-a "- + 8 -a "- 8 + 4nH q1 ql 

(6) 

X~~ a~ <I>1,s+1 (1 + ),<.jil,s+l) F:+1dq8+1dQs+1 = 0, 

and so forth. Here, 

us = ~ <I>ij (/ qi - q .j) 
l<i~j<s 1 

(7) 

can be written in the form of a sum U 8 == U 8° + .\U 81, 

where 

U~= ~ <I>(/qi-qi/), 
l<J<i<s 

Now, for each of the systems, we consider an ex
pansion in powers of the small parameter .\ : 

a " (:-) aq"" ' a.&" ql 1 1 

(Sb) 

(6a) 

(6b) 

+ 4~0) ~~a:" (<I>1,s+l 'fi.s+I) F2+1dqs+1dQs+1 = 0 
1 

and so on. The solution of the system (Sa) is, 
evidently, 

F~0 = C8 exp (- U~/8), (9) 

where C s is a constant which is determined by the 

condition of the decay of the correlation 

(IO) 

- fl Fdqi,-&i,<pJ~O 
1<i<s 

for all I q i - qj I -+Wand the normalization condi

tion 
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(ll) 

We find from the second of the equations of (5b) 
that 

02) 

This expression automatically satisfies the first 
equation of (5b). 

The general solution of (5b) can be written for
mally as 

p~l =-( U! j8)F~o + Cgs ( ql ... Qs), 

where g s is determined upon substitution in the 

first equation of (5b) and is equal to g s ,., F s 0 O • 

However, it is easy to prove directly that preser
vation in the solution of terms of the type 
Cgs ( q 1 , · •• q8 ), both in (12) and in all subse

quent approximations, would reduce to the corre
sponding determination of the normalization con
stant; in what follows, we shall neglect these 
terms. 

Proceeding stepwise from one system of equa
tions to the other, we find 

(13) 

Further, 

f~0 = exp (- U~/8) 04) 

X ~ { IT (1 + f (J qi- qs+1j))- 1 
l<:i<:s 

(15) 

pl2 = _ u.~ pn _ _!___ (u; )2 p1o 
s 8 s 2 (j. s 

(16) 

where 

a 8
11 and a/ 2 are constants. Carrying forward 

the computation, it is easy to determine a much 
higher approximation. Knowledge of the first terms 
of the series described here is sufficient that we 
can, using unitary and binary distribution functions, 
estimate the effect of noncentral forces on the 
equilibrium properties of the system under consi
deration. 

Calculation of the mean and free energies of the 
system can be carried out in the usual fashion and 
can be compared with the results of the corre
sponding calculation for purely central interaction 
on the one hand, and with experimental data for 
diatomic gases on the other. 

As a second problem of known simplicity, we 
consider a molecular crystal consisting of mole
cules which possess a permanent dipole moment.* 

Let us consider a dipole crystal of cubic struc
ture, at the lattice points of which are located di
pole molecules with moments p. ( i = 1, ... , N ). 

t 
The set of angular coordinates which determine 

the orientation of each dipole ( t7 i , Cf' i ) will be 

denoted by ei ' the interaction potential of two 

dipoles <Pai ak is written in the form 

<D - -3 
ai ak - Pa iPakr a1 ah (17) 

-3(Pa/a 1ak) (Pa 1/a;ak) r-;;tak' 

where the indices ai denote the types of mole

cules. The type characteristics are introduced in 
the following way. The dipole crystal, in which the 
centers of mass of the dipole molecules are rigidly 
fixed at the lattice points, will be considered as 
a system of particles of different types. The type 
of particle is determined by the lattice vector of 
that point at which the center of mass of the mole
cule is located. In Eq. (17) the type character
istics appear in the form of numerical factors in 
connection with the equality 

(18) 

*The case of a gas consisting of molecules with con
stant quadrupole moments can easily be considered if the 
law of interaction of two quadrupoles is taken in the form 

X [ 1 - 5 cos2.& a- 5 cos2.&b- 1.5 cos2 & a cos2 .&b 

+ 2 ( ~in.& a sin &b cos (tfla- tpb)- 4 cos & a cos .&b) 2], 

where Q is the quadrupole moment of a cylindrically 
symmetrical molecule. 
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where d is the lattice constant, l is an integer. 
They also follow from the cosines of the angles 
which determine the direction of the lines of cen
ters of the two dipoles under consideration. In 
such a model the dipole crystal is an "orientation" 
gas or liquid at the temperature which exceeds the 
temperature of orientation flow. 

We introduce the distribution function Fa a 
1' •• s 

so normalized that 

dO.i = sin &;d&Ar.pr, 

is the probability that the direction of the dipole 
moments in the chosen group of s-dipoles lies 
within elements of solid angles dQ 1 ••. dQ s for 

arbitrary orientations of the other dipoles. 
Considering the functional defined on a class of 

arbitrary regular functions u 1 ( el ) ... UN (eN) 

given on the surface of the unit sphere 

(20) 

=~DN n (l+41tUa;(S;))d0.1 ••• dO.N, 
H;;a;<;;N 

and making use of the identity 

anN auN nN 
aa~ + aa~ --;:z- = 0• 

ai" ai 

(where p.= kT, ex.= 1, 2, Oil = tY i and 0;_2= cp 1 ) it 

is easy to express the equations in functional 
derivatives 

a 'lJL 1 

aa~ w a,6, + 47tfL 
(21) 

Carrying out the functional differentiation and re
placing in the final calculation the derivative func
tions U a by zero, we obtain a system of equations 

for the distribution functions introduced above 
[taking into account the relations 

this system can be written in the form 

(23) 

a ~I> 
__ a_,._as_+:_::l F d" 0 

i)fJ"' a, ... as+I ~-'s+l = ' + 4:{L ~ ~ 
I<;;as+l<;:N 

(as+l.Pa, ... as) 
l 

where U is the potential energy of the 
al .. . as 

system of s chosen dipoles. All the calculations in 
this case are entirely analogous to those used by 
Bogoliubov for the distribution function of the 
positions of molecules in a gas or liquid. 1 

We write the interaction potential in the form 

(24) 

and will consider the quantity y == p 2 / d3p. (p is 
the dipole moment of the molecule; for simplicity 
we assume that the magnitudes of the dipole mo-
ments of all the molecules are identical) as a 
parameter which is characteristic for the system 
under consideration. 

If at first we do not consider the effect of the 
external electric field, and assume the inequality 
y < < 1 to be satisfied, then the equation 

(25) 

ai)Ja a 
'' s+l F dO -0 ()()"' a, ... as+l s+.t -

1 

Ua 1 ... as = ~ r.pa;an 

can be solved with the help of an expansion in 
powers of the small parameter y . Writing 
F in the form 

al .. . as 

(26) 

we find 

po - t a, ... as - cons . 

If the normalization condition is written in the 
form 

then F 0 

al ... as 

(27) 

i = 0, 1, ... , 

= l follows from this equality. 

The equation for F 1 has the form 
al •. . as 
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and since, for the dipole potential, 

~ 'fa1, a8+ld!ls+l = 0, 

we get 

F1 --~u''' a 1 .•. a5 - al···as 

(28) 

identically, 

(29) 

in agreement with the normalization condition. The 
second approximation is found in a similar way and 
has the form 

where, in accord with the normalization condition, 
the constant K must be given by 

further approximations can be determined, but 
their calculation is not so simple. 

In the presence of an external homogeneous 
electric field E and upon fulfillment of the condi
tion 

(32) 

the computation scheme does not undergo any 
change. 

These expressions for the distribution function 
permit us to construct a theory of the equilibrium 
properties of the dipole crystals under con sidera
tion. Numerical calculations and comparison with 
experiment, and also comparison with other theories 
which apply to the two very simple cases con
sidered by us will be given in a subsequent paper. 
Separate consideration is necessary for the con
struction of a theory in the case of violation of the 
relation (32), while this case has the greatest 
interest. We hope in the near future to publish 
results which apply to this variant. 

For the second of the problems considered by us 
the considerations developed above can without es
sential change be applied for the purpose of con
structing a semiclassical theory of ferromagnetic 
bodies without use of the "sphericalizing" ap-

proximation. 

1N. N. Bogliubov, Problems of dynamical theory in 
statistical physics, Moscow, 1946. 

2c. Zener, Phys. Rev. 37, 556(1931). 

Translated by R. T. Beyer 
42 Here we have studied the properties of the dipole 

potential tjJ • In similar fashion the constants for ----
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The relaxation between the electrons of a metal and the crystalline lattice (phonons) is 
considered. The state of the electrons and the lattice is described by equilibrium Fermi and 
Bose functions with different temperatures. The heat transfer coefficient connected with 
the "Cerenkov" radiation of sound waves by the electrons has been determined. 

l THERE have appeared recently several experi
• mental 1• 2 and theoreticaP• 5 papers illumi

nating the investigation of deviations from Ohm's 
law in metals. The departures from a linear rela

tion between the cUITent/ and the field E, noted by 

*Work presented at the Scientific Council, Physico
technical Institute, Academy of Sciences, Ukrainian 
SSR, December 12, 1953. In the preparation of the 
work for publication, papers were studied which ap
peared in print during the subsequent two years. 


