Determination of the Branching Ratio in the Disintegration Scheme of Po²¹⁰

N. S. Shimanskaia

Radium Institute, Academy of Sciences, USSR (Submitted to JETP editor March 3, 1956) J. Exptl. Theoret. Phys. (U.S.S.R.) 31, 174-177 (August, 1956)

Measurements were made of the branching ratio in the disintegration scheme of Po^{210} . The probability of transition to the excited level Pb^{206} (with an energy of E = 800 kev) was found to be $1.2 \pm 0.2 \times 10^{-5}$.

FOR a long time after the discovery of Po²¹⁰ \mathbf{L}_{\bullet} it was considered that this radioactive isotope was a monochromatic α – radiator which did not emit any other radiation besides 5.3 mev $\alpha_{\overline{1}}$ particles. Only in 1930 Bothe and Becker¹, while investigating y-radiation arising under the action of α -rays from Po²¹⁰, discovered that the same isotope emits a characteristic, very weak, y-radiation. A comparison with a Ra standard enabled the authors to obtain a rough evaluation of the absolute amount of this radiation (~10⁻⁵ quanta/ α -disintegration Po²¹⁰). During succeeding years the radiation of Po²¹⁰ has not been the subject of study by experimental physicists. With the exception of the works of Curie and Joliot² and Bothe³, whose results were not too clear nor reliable, nothing has been published in literature concerning γ -rays of Po²¹⁰ for 15 years following the discovery of Bothe and Becker. The question of γ -radiation from Po²¹⁰ was again raised in 1946 in connection with the publication of the work of Chang⁴ who reported that there seems to exist a "thin structure" spectrum of Po²¹⁰. Chang found in the energy region 3.5 to 5.3 mev 12 lines of intensities from 1.3×10^{-4} to 2×10^{-5} from the basic 5.3 mev line. These results of Chang naturally aroused special interest concerning γ -radiation of Po²¹⁰, since they contradicted the little information on the intensity and energies of γ -rays from Po²¹⁰ available in physics at that time. There appeared, therefore, after Chang's communication, a series of papers⁵⁻⁷ on the investigation of energy and intensity of γ – radiation from Po²¹⁰. It was concluded in these investigations that the energy of the nuclear radiation is 700 to 800 kev and its emission does not exceed $2 \times 10^{-5} \gamma$ - quanta/ α - disintegration of Po²¹⁰. That the results of Chang were faulty was proven by the work of Wadey⁸ and subsequent experiments of Haissinsky⁹. The appearance of short path α -particles was explained by the diffusion of the Po²¹⁰ atoms in the metal backing.

In recent years there appeared several more papers¹⁰⁻¹⁵ on the study of γ -radiation from Po²¹⁰, its energy, absolute intensity, conversion coefficients and their relations for different shells. Results obtained by different authors are shown in Table I.

The work of Benedetti and Minton deserves special attention. The authors were first to observe, by means of scintillation counters, short range α -particles coincident with the ~803 kev γ rays. The difference between the energy of the basic group α -particles of Po²¹⁰ and that of the short range line corresponded, within the limits of experimental error, with the energy of the γ -rays. The shape of the angular correlation curve between the short range alpha-particles and the γ -rays $(I_{\gamma} \sim A \sin^2 2 \alpha)$ and the lifetime of the excited state of Pb²⁰⁶ (< 10⁻⁹ sec) indicated the presence of an electric quadrupole γ -transition. Thus we can accept the disintegration scheme for Po²¹⁰

The intensity of γ -radiation from Po²¹⁰ and, consequently the branching ratio in the disintegration scheme of this isotope, were not reliably determined at that time. Results obtained by different authors vary considerably. Thus the following values were obtained: in Ref. 3, 0.8 to 1×10^{-5} ;

m	T		
LARTE			
10000			

 γ - Radiation Po²⁰

			Enonari	Emission "	Conversion coefficien		
Author		fear of the work	E_{γ} (kev)	quanta disint.	α _K (%)	∝ _K /∝L	
Alburger and Friedlander ¹⁰ Grace et al. ¹¹ Barber and Helm ¹² Pringle, Taylor et al. ¹³ . Benedette and Minton ¹⁴ Rioux ¹⁵ Present work Hayward, Hoppe and Mann ¹⁶ .		1951 1951 1952 1952 1952 1952 1952 1954 1954	800 ± 6 804 803 $(E_{\alpha_1} = 4500)$	$1.80 \pm 0.14 \\ 1.5 \pm 0.4$ $1.6 \pm 0.2 \\ 1.2 \pm 0.2 \\ 1.22 \pm 0.06$	<5 ~12 ~20-30 ~9	3.7 <u>+</u> 0.5	

in Ref. 11, $1.8 \pm 0.14 \times 10^{-5}$; in Ref. 12, $1.5 \pm 0.4 \times 10^{-5}$; in Ref. 15, $-1.6 \pm 0.2 \times 10^{-5}$. From the data of Benedetti and Minton¹⁴ one can obtain the value 0.5×10^{-6} . A more or less accurate measurement of the number of γ -quanta in the disintegration of Po²¹⁰ would be of interest from the standpoint of clarifying the multipole nature of this transition, since at the present time no definite conclusion can be made on this question.

2. To determine the value of the branching ratio in the disintegration scheme of Po²¹⁰ it is obviously necessary to determine, in addition to the disintegration rate of any single source of γ – quanta, also the absolute activity (number of disintegrations per second). In the case of polonium preparations of high activity (> 10 to 100 millicuries) the usually employed methods of a-measurements---ionization or impulse chamber and the luminescent counter method --- can result in considerable errors not only due to diffusion and migration of active atoms but also due to the absorption of particles in the active layer itself and their reflection from the backing material, appearance of counts of not readily understood origin, etc. Besides, as we have shown, in the case of strong open sources of Po²¹⁰, chemical-physical processes take place which are apparently connected with the formation of surface films of noticeable thickness. This phenomenon can distort to a considerable degree the values of activity for polonium sources obtained by the above-mentioned methods. A comparison, carried out by us, of results of measuring activities of a series of strong Po²¹⁰ sources in the calorimeter, in a luminescent arrangement and in an impulse chamber of a small solid angle, showed that α - measurements by the last two methods can give considerable errors reaching sometimes 30 to

50%. It is possible that the inaccuracy in the determination of the polonium content in the source is the cause of the diversity in the data on emission of y-quanta from Po²¹⁰ mentioned above.

3. The source used by us was a preparation of pure Po^{210} . Absence of any noticeable radioactive impurities was confirmed by long time (eight months duration) calorimetric measurements of its disintegration curve as well as of the absorption curve of its γ -radiation in lead. The decrease of the activity of the source also corresponded to the half life of Po^{210} (138.5 days).

The number of γ – quanta emitted by the source in unit time was determined by comparison with a source of Co⁶⁰ of known activity ($\hat{N}_0 = 19.3 \pm 0.8$ $\times 10^3$ disint/sec). These measurements were made with a standard β – counter B-1 with an additional 2 mm aluminum filter. Sources of Po²¹⁰ and Co⁶⁰ were placed at an accurately determined distance from the counter, and the two sources were, in addition, surrounded by 1 mm layer of lead. This was done to remove soft radiation of Po²¹⁰ if present. This radiation, as measurements have shown, is not stopped by the 2mm alluminum filter. The results of two series of similar measurements are shown in Table II. Determination of the absolute activity of the source was made in a double static calorimeter used in the Radium Institute, Academy of Sciences, USSR, for the measurement of absolute activities of radioactive preparations¹⁷.

Results of these measurements are also shown in Table II. In processing the calorimetric data, the quantity of heat emitted by one Curie of Po^{210} in the calorimeter was taken as 32.01×10^{-3} watts, or $27.54 \text{ m cal/hr}[E_{\alpha} (Po^{210}) = 5.298 \text{ mev};$ one Curie = 3.7×10^{10} disint/sec]. Knowing the ratio

		γ - measure	ments	Calorimetric measurements		
Date	Number of pu Po ²¹⁰	llses per minut V _Y Co ⁶⁰ standar	te	Quantity of heat Q. cal/hour	Activity of source N _α , mCu	
11.VII 12.VII 14.VII 2.VIII 9.VIII 1.X 2.X	$\begin{array}{ c c c } 407\pm 6\\ 427\pm 6\end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.013 ± 0.035 1.021 ± 0.035	4.19 4.15 3.73 3.58 2.77 2.77	152,0 150,8 135,3 130,1 100,5 100,5	

 TABLE II
 2

 Measurement of y-Radiation Intensity and Activity of the Po
 2

 $\bar{k}_0 = 1.017 \pm 0.035$ Value of N_{α} averaged 150.3 mCu

for 13. VII

Source

 k_0 of the γ -ray intensity of the calibrating source to that of the measured Po²¹⁰ preparation and their absolute activities N_0 and N_{α} , it was possible to find n_{γ} --the number of 800 kev γ -quanta emitted from Po²¹⁰ per each α -disintegration. It was thereby necessary to introduce also correction coefficients for the difference in the sensitivity of our counter to γ -radiation from Co⁶⁰ and Po²¹⁰ — k_1 ; for the difference in absorption of these radiations in the millimeter lead foil surrounding both counters k_2 ; and in the 2 mm. aluminum filter— k_3 . The experimentally obtained values of these coefficients were equal respectively to: 1.56 ± 0.08 ; $1.043 \pm$ 0.005 and 1.014 ± 0.005 , while the value obtained for $n_{\gamma} \chi$ was $N_{\gamma} = \langle 2N_0/N_{\alpha} \rangle \cdot k_0 \cdot k_1 \cdot k_2 \cdot k_3 = 1.16 \times 10^{-5}$ $N_{\gamma} = quanta/\alpha$ -disint Po²¹⁰

with a maximum possible error $\pm 14\%$. Considering the internal conversion of $Po^{210} \gamma$ -radiation (E_{γ} = 800 kev) in the K- and L-shells (1.07% ^{10,18}) γ and rounding off the value of N_{γ} and its error we have finally:

$$N = 1.2 \pm 0.2 \times 10^{-5} \ \gamma$$
 - transitions/ α disint Po²¹⁰

The values of the absolute number of γ -transitions in Po²¹⁰, and therefore the values of the branching ratio in the disintegration scheme of this isotope obtained by us were considerably less than those reported in Refs. 11, 12 and 15. Since the usual ionization or impulse chamber methods were used by these investigators to determine the activity of the polonium source, it was possible that

some of the α – particles were not registered, as mentioned above, due to the diffusion of the active atoms into the backing material and absorption in the surface films. This could result in raising the value obtained for the absolute intensity of nuclear radiation from Po²¹⁰. It should be mentioned that after the completion of our measurements there appeared in print a paper by Hayward, Hoppes and Mann¹⁶ (the results contained in this paper were entered into Table I). The authors, who used a balanced calorimeter to measure the absolute activity of the polonium preparation, obtained a value for the yray emission very close to ours, namely, 1.22×10^{-5} . Measurement of the γ -ray intensity was made by a comparison with a Co⁶⁰ standard, using a scintillation counter with a NaI(Tl) crystal.

In conclusion it should be noted that the values obtained by different authors for the branching ratio in the Po²¹⁰ disintegration scheme do not agree with the deductions of Benedetti and Minton concerning the quadrupole nature of γ -radiation from Po²¹⁰. Indeed, the penetration ratio for α -particles 5.3 and 4.5 mev and $\Delta j = 2$ computed according to Gamow's theory as 3.2×10^{-5} , is considerably larger than the experimental values for this ratio. The experimental value of the ratio of conversion coeffecients in the K and L shells, $\alpha_K/\alpha_L = 3.7 \pm 0.5$, obtained by Alburger and Friedlander¹⁰ is evidence against the quadrupole nature of Po²¹⁰.

¹ W. Bothe and H. Becker, Z. Physik 66, 307 (1930).

² I. Curie and M. Joliot, J. Phys. Rad. 2, 20 (1931).

³ W. Bothe, Z. Physik **96**, 607 (1935).

⁴ W. Chang, Phys. Rev. 69, 60 (1946).

⁵ N. Feather, Phys. Rev. 70, 88 (1946); Sajac, Broda and Feather, Proc. Phys. Soc. (London) 60, 33 (1948).

⁶ K. Siegbahn and H. Slatis, Ark. Fys. A 35, 3 (1947).

⁷ S. Benedetti and E. Kerner, Phys. Rev. 71, 122 (1947).

⁸ W. Wadey, Phys. Rev. 74, 1846 (1948).

⁹ M. Haissinsky et al., Phys. Rev. 75, 1963 (1949).

¹⁰ A. Alburger and S. Friedlander, Phys. Rev. 81, 523 (1951).

¹¹ Grace, Allen et al., Proc. Phys. Soc. (London) 64A, 493 (1952).

¹² W. Barber and R. Helm, Phys. Rev. 86, 275 (1952).

¹³ Pringle, Taylor and Standil, Phys. Rev. 87, 384 (1952).

¹⁴ P. Benedetti and G. Minton, Phys. Rev. 85, 944 (1952).

¹⁵ M. Rioux, J. Phys. Rad. 13, 24 (1952).

¹⁶ Hayward, Hoppes and Mann, J. Res. Nat. Bur. Stand. 54, 47 (1955).

¹⁷ N. Shimanskaia, Trudy Rad. Inst. Akad. Nauk SSSR 7, 198 (1956).

¹⁸ Rose, Goertzel et al., Phys. Rev. 83, 79 (1951).

Translated by J. L. Herson 36