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(4) 

where b 1 < 0. 
The presence of a negative term in Eq. (4), if it 

is supported, creates serious difficulties for the 
present quantum-mechanical theory of the Hall ef­
fect and for the establishment of a relation between 
p and R. In particular, it contradicts Eqs. (l) and 
(2); therefore, further careful investigations are 

necessary in the region of low temperatures for the 
resolution ofthe question of the reality of the ex­
istence of the anomalous Hall effect found in Ref. 
6. 
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A METHOD was set forth in Ref. 1 for the study 
of the vibration spectrum of solid solutions of 

isotopes. The method devoloped there can be ap­

plied to the determination of the spectral density of 
such solutions in the presenceof long-range order. 
In the case c6nsidered, the lattice is divided into 

two sublattices, for which the probabilities Pi of 
finding the i th isotope are different and are given 
by the values 

P l 1 + s. pll=1-c--__!_- (1) 1 = -c T' 1 ;::: , 

p! -~ C- _!_ • p2ll c= C + ~ • 
2 ;::: ' "" 

The indices I and II denote the types of sites, c 
= concentration of the second isotope and the quantity 
s characterizes the degree of order. The value s 
= 1 ( c = %) corresporrds to complete ordering of the 
crystal, the value s = 0 to complete disorder. 

To make clear the peculiarities of the spectrum, 
we consider the case of a small difference in masses 
of the two isotopes. According to the results ob­
tained 1, the spectral density of a system with ran­
dom distribution of masses can be represented in the 
form 

'J (z) == 'J 0 (z) ·- d~ I dz, 

where, for small mass differences, 

~ (z) = ~ { Z'Jo (z) ~ ~r 
r 

\" dO. c dk' 
+ z2 j 1 Vw 2 i ~ z -w 2 (k') 

w'(k)=Z 

(2) 

(3) 

X ] sre:r, exp {21t"i (k - k') (r- r')} + ... } , 
r,r' 

(4) 

Here z is the square of the frequency, mr is the 
value ofthe mass at site r (r = n 1 a 1 + n 2 a 2 +n 3a 3 , 

n. = an integer, a.= lattice constants), the bar 
' ' 

denotes averaging, N = total number of atoms, d 11 
is an element of area on the surface w 2 ( k) = z 
over which integration is to be carried out, 'V w 2 is 
the gradient in the space of the wave vector k, f 
is the principal value of the integral, v 0 ( z) is the 
unperturbed spectral density; the spectral density 
is normalized to unity. For a crystal with the dis­
tribution of Eq. (1), it is natural to use (for the un­
perturbed case) the spectral density v 0 ord of a 
lattice with alternating masses 

ml = m (1- x), mil = m (1 + x), (5) 
which represent the mean masses at sites of type 
I and II, respectively. Here iif == ( 1- c )m 1 +cm 2 , 

x = s(m 2 - m 1 )/2 iii= s£/2. Then 

-2 (, s)(1 S)2 e:Il =c-rT -c-2 e: 

and, in accord with (2) and (3), we have 
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d 
v (z) = v0 (z) - -d ~ (z), 

ord Z ord 
(6) 

~ (z) 
ord 

(7) 

0 

2 { 1 s2 } zg voord(z') 
= e: c ( -c)--- z2v (z) C -=-=-=~- dz'. 

2 °ord j z - z' 
0 

Thus the fluctuating addition, defined by the de­
parture of the actual masses from the mean values 
iii! and iiill' is proportional to £ 2 • It is easy to see 

that for complete order ( s = I, c = Y:; ), the additional 
contribution is zero. 

For three-dimensional crystals and sufficiently 
small values of mass differences for the isotopes, 
complete ordering does not in general lead to a dis­
continuity in the frequencies, and, consequently, 
Eqs. (2) and (3) have meaning for all values of the 
frequency except the limit frequency zo. When a 
discontinuity appears, (2) and (3) are Jot valid 
close to frequencies which bound the forbidden 
region. Expressions that are valid for all frequen­
cies, and the displacement of the limiting frequen­
cies, are easily determined by means of another de­
composition, shown in Ref. I. 

In many cases, as a consequence of the basic 
symmetry of the coefficients of interaction, the func­
tion v 0 ord can have singularities. For example, if 

the interaction is limited to nearest neighbors, the 
s~ectral density of a simple cubic lattice, for the 
Sites I and II of which we have, respectively, sites 
with even and odd values of (n 1 + n 2 + n 3 ), 

has (near the limit frequencies z 0 ) singularities of 
the form 

voord'-' V XZo I I Zo- Z I . (8) 

The frequency gap in this case is 

(9) 

In spite of the fact that (2) and (3) are not valid 
near z 0 (because of the singularities of v 0 ord) we 

can, with their help, still draw some conclusions 
on the spectrum of the crystal under investigation. 

For complete order, according to the relations ob­
tained, the fluctuating term is equal to zero and the 
behavior of the spectral density near the limiting 
frequencies z ~ is given by Eq. (8). The frequency 
gap is a maximum in this case. 

With the appearance of disorder, as a result of 
the drawing together of m and m , the frequency 

I II 
gap decreases. Moreover, the increasing fluctuation 
contribution can materially affect the course of the 
spectral density near z ~ . Near the limiting fre­
quencies, the fluctuating term tw, in accord with 
(3) and (8), has the form 

, E I 1 s 2 } ( XZn ·)• I, 
w.v ,.___,_ ~c ( -c)-- ' .. ---- . 

s L 4 '_ I z0 - z I 
(IO) 

Hence it is evident that the role of the added term 
depends on the degree of order. For xz 0 / I z 0 - z 

"'I, when the increase in v 0 ord is already 

considerable, the fluctuating term remains small 
and cannot compensate for the increase if s is not 
small. For smalls, on the other hand, compensation 
can take place. 

In the case of complete disorder, x = 0 and the 
frequency gap vanishes. 
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