
150 LETTERS TO THE EDITOR 

We note that 1'1E in Eq. (6) is the same as in Eqs. 
(3)-(5). Ferrites, manganites and other ferro
magnetics, for which r 1 > R, make up group 2; and 
therefore for them, as also for Ni, according to Eq. 
(6), it follows that one expects the positive sign 
of the effect; Gd, Fe, Co and invar alloys make up 
group I ( r 1 < R ), and therefore for them one ex
pects the negative sign of the effect. 

In Tables I and II data are presented for the 
calculations with Eqs. (l)-(6); the results agree 
satisfactorily with experiment, in particular with 
the data of neutronographic analysis of the mag
netic structure of alloys 2 • 3 • 

* R is computed with the same accuracy (to the 
fourth decimal place) as r is given experimentally ( cf. 
Ref. 1 ). 
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JT has been shown that 1• 2 the increase of the 
ohmic resistivity in the disordering of the alloys 

Fe 3Al is accompanied by a proportional increase in 
the Hall constant R, i.e., the relation 

R-R0 =a (p- Po). (I) 

exists. An analogous relation was also found for 

the change of R and p in the dispersion hardening. 
In addition, the question has been posed 1 •3 of the 
relation between R and p as the temperature 1' 
changes. Karplus and Luttinger3 , as a result of 
developing and making more precise the theory of 
Samoilovich and Kon'kov 4 , found that R as a func
tion ofT is proportional to p2 • However, an ex
amination of the existing experimental data did not 
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FIG. 1. 1- Ni, 2- Fe, 3-46% Ni + 53.2% Fe. 

2 

support this conclusion of the theory:The ex
ponent of degree n proved to be less ihan 2 and 
different for different elements 5 • Contrary to these 
results, the measurements given by us for the al
loys Fe-Ni gave the following dependence (see the 
Figure) 

(2) 

In addition, the analysis of experimental data of 
other authors presented by us showed that the rela
tions (I) and (2) are found to be in good agreement 
with experiment also for Fe and Ni in the interval 
from 100° K even to a temperature of the order of 
0.8® (®==Curie point). 

From Eqs. (I) and (2) it follows that, besides the 
Hall effect of the first kind, obeying the theory of 
Karplus and Luttinger, there exists a Hall effect 
of the second kind, for which a does not depend on 
p. Thus one can also explain the fractional values 
of n obtained empirically by the authors mentioned 
above. 

A final solution of the question of the relation 
between R and p is made difficult, however, by the 
results on the changes of Hall effect at low tempera
tures, according to which there exists a region 
where dR/dT < 0. The quantum theory of electrical 
conductivity gives (taking into account the residual 
resistivity) 

P =Po+ bTn, (3) 

where n == 5. Meanwhile, the presence of a region 

of the Hall effect for which dR/dT < 0 requires for 
R the relation 
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(4) 

where b 1 < 0. 
The presence of a negative term in Eq. (4), if it 

is supported, creates serious difficulties for the 
present quantum-mechanical theory of the Hall ef
fect and for the establishment of a relation between 
p and R. In particular, it contradicts Eqs. (l) and 
(2); therefore, further careful investigations are 

necessary in the region of low temperatures for the 
resolution ofthe question of the reality of the ex
istence of the anomalous Hall effect found in Ref. 
6. 
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A METHOD was set forth in Ref. 1 for the study 
of the vibration spectrum of solid solutions of 

isotopes. The method devoloped there can be ap

plied to the determination of the spectral density of 
such solutions in the presenceof long-range order. 
In the case c6nsidered, the lattice is divided into 

two sublattices, for which the probabilities Pi of 
finding the i th isotope are different and are given 
by the values 

P l 1 + s. pll=1-c--__!_- (1) 1 = -c T' 1 ;::: , 

p! -~ C- _!_ • p2ll c= C + ~ • 
2 ;::: ' "" 

The indices I and II denote the types of sites, c 
= concentration of the second isotope and the quantity 
s characterizes the degree of order. The value s 
= 1 ( c = %) corresporrds to complete ordering of the 
crystal, the value s = 0 to complete disorder. 

To make clear the peculiarities of the spectrum, 
we consider the case of a small difference in masses 
of the two isotopes. According to the results ob
tained 1, the spectral density of a system with ran
dom distribution of masses can be represented in the 
form 

'J (z) == 'J 0 (z) ·- d~ I dz, 

where, for small mass differences, 

~ (z) = ~ { Z'Jo (z) ~ ~r 
r 

\" dO. c dk' 
+ z2 j 1 Vw 2 i ~ z -w 2 (k') 

w'(k)=Z 

(2) 

(3) 

X ] sre:r, exp {21t"i (k - k') (r- r')} + ... } , 
r,r' 

(4) 

Here z is the square of the frequency, mr is the 
value ofthe mass at site r (r = n 1 a 1 + n 2 a 2 +n 3a 3 , 

n. = an integer, a.= lattice constants), the bar 
' ' 

denotes averaging, N = total number of atoms, d 11 
is an element of area on the surface w 2 ( k) = z 
over which integration is to be carried out, 'V w 2 is 
the gradient in the space of the wave vector k, f 
is the principal value of the integral, v 0 ( z) is the 
unperturbed spectral density; the spectral density 
is normalized to unity. For a crystal with the dis
tribution of Eq. (1), it is natural to use (for the un
perturbed case) the spectral density v 0 ord of a 
lattice with alternating masses 

ml = m (1- x), mil = m (1 + x), (5) 
which represent the mean masses at sites of type 
I and II, respectively. Here iif == ( 1- c )m 1 +cm 2 , 

x = s(m 2 - m 1 )/2 iii= s£/2. Then 

-2 (, s)(1 S)2 e:Il =c-rT -c-2 e: 

and, in accord with (2) and (3), we have 


