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a - polarization of protons on He ( E = 315 mev), b -

the same on C ( E = 290 mev ). 1 - results of calcula
tion with a rectangular well, 2 - the same, taking into 
account the volume distribution. 

A[== (exp {2i3f} -1) / 2i, (ll) 

st is the phase shift for the partial wave with J 
= l ± ~. which we calculate in the WKB approxima
tion; P~, P: are the Legendre polynomials. The 

results of the calculation of P ( 1J) are given by the 
graph, and show that, because of the more accurate 
description of the behavior of the potential at the 
edge of the nucleus by means of introducing a 
certain nucleon distribution inside it, we have suc
ceeded in obtaining better agreement with experi
ment. This is explained by the inclusion of higher 
phases. The polarization remains approximately 
constant for g varying from 3e to 5e which can be 
understood from the nature of the phenomenon. A 
decrease in ( makes the agreement with experiment 

worse. 
In conclusion, I express my thanks to Prof. D. 

lvanenko for his continued interest in the work and 
for the discussion of results. 
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THE problem of the elastic scattering of slow 
electrons by the hydrogen atom, taking ex

change into account, was first solved by Morse and 
Allis 1 by means of a numerical integration of the 
corresponding integro-differential equation and 
later by Massey and Moiseiwitsch 2 by means of a 
variational principle. The object of the present 
calculation consisted of checking the effectiveness 
of the method of integral equations proposed by 
Drukarev3 • 

We shall start with the same approximate repre
sentation of the wave function of the system 
"electron + hydrogen atom" which was used by 
Morse and Allis: 

where t/J ( r) is the function of the ground state of 
the hydrogen atom. F+(r) and F-(r) are con
sidered to be spherically symmetric, which means 
that only s-scattering is taken into account. 

With the choice of 'I' ( r 1r 2 ) made above the func-

tions f ±( r) = r F ±( r) must satisfy the equation 

( !!:___ + k2) f± (r) = V (r) f± (r) + 2u (r) 
dr2 --

(2) 

00 

X ~ u (r') t± (r') {Y (rr') + e:- ~2 } dr' 

0 

and the boundary conditions 

t± (0) = 0, 

where 
00 

V (r) = 2 {~ u2 (r') y (rr') dr'- +}, 
0 

, {1/r 
Y (rr) = ljr' 

r>r' 
r~r', 

(3) 

(4) 

u (r) = r~ (r), 
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1: is the energy of the atom, k is the wave number of 

the incident electron. 
2 4 d d 0 h' We note that usually ' in or er to enve t IS 

equation the wave function (l) is substituted into 
Schrodinger' s equation and after multiplying it by 

1/J ( r 1 ) , and integrating over r 1 , Eq. (2) is obta!ned. In so 
doing it is generally overlooked that the Schr?dinger equa
tion cannot be exactly satisfied by any functiOn of the 

form (l). However, Eq. (2) may be justified quite 
rigorously if one uses the variational principle 
formulated for collision problems. 

Using the method indicated by Drukarev 3 , Eq. 
(2) may, by taking (3) into account, be brought to 
the form of the following two integral equations: 

X (r) = rp1 + ~ K (rs) X (s) ds, 
0 

r 

Y (r) = rp 2 + ~ K (rs) Y(s) ds, 
0 

with 

Here the following notation is used: 

G(l = !' (0), 1 0 k 0 'P1 =- sm r, 
k 

r 

rp2 = ~ ~sink (r-- s) u (s) ds; 
0 

00 

IX~= ~ u (s) f (s) (! +e:- ~2) ds; 
u 

1 
K (rs) = k sink (r- s) V (s) 

r 

(5) 

(6) 

(7) 

(8) 

±! u(s)~sink(r-t)u(t)(+- !)dto 
s 

Substituting (7) into (8) we shall obtain the equa
tion relating a. 1 to o. 2 , 

00 

IXz = IX1 ~ u (r') X (r') ( ~ +e:- ~}dr' (9) 

0 
00 

+1X2 ~ u (r') Y (r') (:, +e:- ~2) dr. 
0 

This equation and the condition (4) allow us to 
find both constants and by this, together with (5) 
and (6), completely determine the solution. 

In the antisymmetric case, one may simplify the 
calculations considerably if one takes into account 

JH 

FIG. I. The scattering phase for the synunetric case: 
1 - numerical integration, 2 - variational method, 3 -
method of integral equations. 
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FIG. 2. The scattering phase in the antisymmetric 
case. The results of all three methods coincide within 
the scale of the drawing. 

that the complete wave function is invariant with 
respect to replacing f( r)-> f( r) + Cu ( r ), where C 
is an arbitrary constant. On this basis one may 
consider either o. 1 or a. 2 to be arbitrary. In par-

ticular, setting o. 1 = 0 we shall obtain 

· f (r) = 1X2 Y (r)o (10) 

Equation (9) then reduces to 

00 
( 1 k2) ~ u (r") y (r') r' +e:- 2 dr' = 1. 

0 

Using (6) and the fact that 
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it is not hard to show thatthis equality is satisfied 
identically, and that, therefore, it does not amount 
to some supplementary condition imposed on the 
function Y ( r ). 

An analogous simplification may be obtained by 
setting u. 2 = 0. But one must keep in mind that the 
iteration process may not converge equally rapidly 
in the two cases. 

The functions f+ ( r) and f- ( r) were calculated 
in the first approximation from the formulas (5)-(7), 
(9) and (10) and the scattering phases were found 
from them. The results are given in Figs. 1 and 2. 
For comp~rison, the results of a numerical integra
tion 1 of Eq. (2) and the results a variational cal-
culation 2 are also given there. In the antisym
metric case all three curves coincide within the 
scale of the drawing. In the symmetric case one 
obtains a somewhat higher value of the phase for 
k > 0 .5; at lower energies in this case also a 
complete agreement is obtained in the first approxi
mation with the result of the numerical integration. 

In conclusion, we expressour gratitude to G. F. 
Drukarev for his interest in this work and for a 
number of valuable suggestions. 
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N OT long ago 3lanc-Lapierre and others 1 

showed that if the probability density w A (A ) 

of the envelope of a quasi-monochromatic station· 

any stochastic process ~is known, the character
istic function f f ( u ) of the process is 

00 

f~ (u) = ~ w A (A) 10 (Au) dA. 

0 

(l) 

Rytov 2 continued the calculation and obtained the 
following formula: 

00 

1 ~ W A (A) w~ (~) = - dA, 
1t • J1 A2-~2 

1;1 

(2) 

connecting the probability density w f ( ~) of a 
stationary stochastic process with w A (A). In 
the present note I wish to show another way of 
deriving Eqs. (l) and (2), whereby they a'e obtained 
as the zero-order approximation in neglecting the 
·narrow passband width of an amplifier. The use 
in this derivation of the time average, correct in 
the case of a stationary stochastic process, gives 
the possibility of obtaining in a natural manner 
the correction terms accounting for the finite 
width of the passband. 

A quasi-monochromatic stationary process can 
be written in the form ~ ( t) =A ( t) cos [w0 t 
+ cp ( t) ] , ~ere A ( t) and cp( t ) are functions 
of time va"ying slowly in comparison with 
cos w 0 t . Then the characteristic function 
f f ( u ) is 

1 
!~ (u) = lim -

r~oo T 

T 

(3) 

X~ exp {iuA (t) cos [w0t + cp (t)]} dt. 

0 

Let us break up the interval 0 , T into N small 
intervals, each of length 'T= 2 rr / w 0 • Then 

N 
1 ~1 1 

fr, (u) = lim - L..J -
N-oo N 1:' 

m=l 

m-r 

(4) 

X ~ exp {iuA (t) cos [w0t + cp (t)]} dt. 

(m-l)T 

Taking into account the smallness of the change 
of A ( t ) and cp ( t ) in the time T, we expand the 
expression under the integral sign in a series in 
A and cp and limit ourselves to terms of the first 
order of smallness. 

Then after simple transformations we obtain 
in place of Eq. (4), 


