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I WE consider the scattering of two fermions 
• interacting by means of a boson field, but, in 

contrast to the usual treatment of this problem, the 
initial and final states of the pair of fermions are 
specified as states with a certain given total 
angular momentum. It turns out that this approach 
to the problem presents a nurr.ber of peculiarities. 

It is convenient to separate the motion of the 
center-of-mass from the relative motion and then to 
examine the process in the systen1 of coordinates 
in which the center-of-mass is at rest. The matrix 
element which corresponds to the simplest irreduci
ble diagram (which is the only one we shall con
sider for the sake of brevity) may be written in the 
form 

where D is the retarded interaction function, f'(i) 
is the vertex part, the matrix of which operates on 
the indices of the i th particle; k ( £, k) is the 4-
momentum of the particle in the system of coordin
ates under consideration ( k 1=-k2 = k ); a i = ± ~ 

define the spin states of the particles. We con
sider only the process of interaction which does 
not lead to the radiation or absorption of bosons 
and also the case of the absence of external fields. 
The diagrams which take into account the proper 
mass of the particles and which are not related to 
the interaction between the particles are also not 
taken into account. 

The matrix elements of interest to us in the 
energy-angular momentum space may be most con
veniently obtained from the matrix elements of type 
(1) by a suitable transformation which takes into 
account the spinor nature of the wave functions 1 

'm~~,;,x, = ~ ~ ~ ~ (dk) (dko) AJmA7,'m, M:~a~: k0 • ( 2) 
cr1 , 02 cro 0 o 1 2 

Here j and m ~~ 2the quantum numbers of the total 
angular momentum and of its component, and the 
index X characterizes the spin state of the pair 
of particles (singlet and triplet). The coefficients 

AX , for example, in the simplest case of the 
si~glet state, have the following form: 

(3) 

In the same way, one may define the coefficient 
for the triplet case which includes suitable spheri
cal vectors and the required symmetric combina
tions of spin states ( i is the energy, p is the ab
solute magnitude of the momentum of the particles 
in the energy-angular momentum space). 

By transforming in the manner indicated the 
matrix element of the zero order approximation to 
(l) (Moller scattering), for example for the transi
tion singlet .... singlet (X = x0 = s ), we obtain an 

expression of the form 

e2A (e:) 0; (~) 13jj,l3mm,• 

where the form of the function A ( £ ), which arises 
as a result of the summation in (2) [similar to (6), 
see below] depends on the explicit form of the 
interaction and on the kind of Bose particles, but 
does not depend on j and m. The argument of Q i 
(Legendre function of the second kind) is the 

quantity /'1. = 1 + p. 2/ 2p 2 where p =I k I is the 
absolute magnitude of the momentum of the parti
cles, and p. is the mass of the boson responsible 
for the interaction. 

In the case of electrodynamics the integration in 
(2) cannot be carried out formally (if one considers 
the particles in the initial and final states to be 
free) since Q i (l) diverges. For bound states 
k 2 =I= m 2 and the function /'1. will contain the bind
ing energy of the particles. 

For large j >>I we have 

Therefore, for not too large initial energies 
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As may be seen, the magnitude of the scattering 
amplitude in this case depends exponentially on 
the mass of the bosons responsible for the inter
action, which makes scattering by means of heavy 
particles improbable. For energies so large that 

jJL/p « l we have K 0 (jJL/p) "'ln (p/jJL), i.e., the 

scattering amplitude increases logarithmically. 
2. Within the framework of perturbation theory the 

transformation (2) permits one to separate the di

vergences in a unique way without carrying out the 
evaluation of the corresponding integrals. 

As an example, let us consider the correction to 
the matrix element which takes into account the 
loop corresponding to polarization of the vacuum. In 
the case of electrodynamics, for example, we have 

e4~ (k) y(I) D(O) ( ) T (} D(ol ( ) (2) • (k ) (4) cr1cr1 .u. u.cr q aT q w q Yv 'jlcr'cr• o; 
1 2 

n<o) - (I> A-2 "--2• A A A • 
u.v- ~-v-q qp.qv)q , q= k-k0 , 

T"'" (q) = Sp \ Ycr A : M y't" -A-
1- (dx). j q-x- x-M 

Using the transformation (2) we shall obtain (X 

= Xo = s) 

Yjm (n) Yj ,m,(n0) 

(k- ko)2 

(5) 

X T(k- ko) !Dj?;.~'i,m, (k, k0) dn dn0 , 

where the integration is carried out over the direc-
( ~ A )2 

tions of the momenta of the particles; k - k 0 

= _ 2p 2 ( ll- nn ), T = l/3 T , and the symbol <ll 
0 /1/1 

denotes the sum 

!D = (/) - 'lp.qv) 
~v , q2 

(6) 

x] 

It may easily be shown that <ll does not depend on 
the angular variables of integration in (5) which 
pennits one to take <ll outside the integral sign. 

Further, we have 2 

3T (q) = 2 (q2 +8M2) I (q)- 12 I PI'- (q),. (7) 

A 1' (1, x 2) (dx) 
I< • p.u.) (q) = ~ [(~ + (i;2)2 __ M2] [(x- q/2)2- M2] 

Carrying out the integration over the angles (5') 
under the integral sign (7) (for which we tempor
arily restrict the region of integration), we shall 

obtain, taking into account 

\ v;m (n) Yj,m, (n0 ) dn dno (8) 
.\(a- nn0) (b- nn0) (c- nn0) 

- 47t r Qi (a) Qj (b) 
- (a-b) (a-c) + (b-a) (b-e) 

+ Qi(c) ]~>I> 
(c _a) (c _b) iio mm, • 

the following expression [for example, for I ( q)]: 

(9) 

where I ( 0) is a logarithmically divergent integral 
and the quantity 

+1 
I. = 81t (' (dx) \' [Qi (ll" + ll) (10) 

Ji? p4 j ex. J ll" 
-1 

0 j (ll, + ll - ex. f) ] cj!_ 
ll,- cx.t t 

(ll,=-2(~2 -m2)/p2 , cx.=21 xI I p) 

be finite. 
turns out to 

3. Further, let us examine the complete scatter
ing amplitude (1) considering the functions D and 
I;' to have been renormalized. If the interaction 
occurs by means of particles of mass Jl, then the 
following representation holds 3 

A ()..2) df.2 
D(2)-~ p, -q - A2 '2 +' f q -A ze: 

(11) 

0" (f.2) ~ 0; 0" (f.2) = 0 for )..2-< !1-2; e:- o+. 
The transformation of the matrix element which 
contains the function D into the space of the angu
lar momenta is here carried out similarly to the 
earlier case, so that replacing the upper limit of 
the integral ( 11) by a certain quantity A 2 , and then 
integrating over the angles under the integral sign 
we shall find that the matrix element turns out to 
be proportional to the quantity 

A• 

~ p (f.2) Qj (ll- )..2j2p2) df.2. 

0 

The existence of the scattering amplitude as an 
observable imposes certain conditions on the func
tion P (A 2 ) in order to guarantee the convergence 
of the integral. In the case of the angular momen
tum j the integrand for large values of A 2 turns 

out to be proportional to p (A 2 ) /(A 2 ) i+ 1. Thus 
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only for j = 0 is the commonly usedcondition 4 

necessary that fA- 2 p (A 2) d A 2 should not diverge 
at the upper limit. For a collision with an angular 
momentum j > 0 the requirements imposed on the 
function p (A 2 ) may be relaxed. 
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R ECENTLY Schrodinger 1 and Case 2 have shown 
that equations for particles of spin 0 and 1 

the matrices (3 k in which satisfy the well-known 
conditions of Duffin 

may be reduced to the Hamiltonian form 

H<l!=it, 

(1) 

(2) 

(3) 

where H is the Hamiltonian operator which has the 
form 

H = y(/.prJ. + xy4 (<X= 1, 2, 3), (4) 

while the matrices y k ( k = 1, 2, 3, 4) also satisfy 
conditions (2). To Eq. (3) we must also add the 
initial condition of the form 

(Hy 4 - x) <1! = 0, (5) 

which, in consequence of (3), holds at any arbi
trary instant of time. These results are evidently 

of interest, in particular because they allow one to 
formulate a theory of particles with spin 0 and 1 
(to a large extent by analogy with the well
developed theory of Dirac). In the work by 
Schrodinger 1 and Case2 the Hamiltonian form (3) 

is obtained by resolving Eqs. (1) into their com
ponents for a certain specific choice of the matrices 
(3 k' Such a noninvariant method of derivation is 
unnecessarily awkward and requires separate cal
culations for spin 0 and spin 1. Moreover, the con
nection between the matrices y k and the initial 
matrices (3 k remains unclear in this method of pro
cedure. The object of the present note consists of 
showing the method by means of which the reduc
tion to the form (3)-(5) may be carried out simul
taneously for spin 0 and 1 without introducing com
ponents, and solely on the basis of Eq. (1) and the 
algebra (2). In the courseof the derivation the rela-
tion between the matrices y k and (3 k is also estab
lished. The results are generalized to the case of 
zero rest mass. 

Letus write (1) in the form ({J"'V"' + (3 4\74 + x.)!f 

= 0 and multiply it by ( 1 - (3;) and by (3;. Taking 

into account the fact that (3 4(3 "'(3 4 = 0 we shall ob
tain 

On the basis of (2) it is easily seen that the 
matrices 

(6) 

(7) 

(8) 

satisfy the same conditions (2) as do (3 k and are 
likewise Hermitian. We note that (8) is easily 
solved with respect to (3"' and gives (3"' =- i (y 4y"' 

- y "'y 4 ). Evidently (6) can be rewritten with the aid 

of (8) in the form (5) where H is defined by (4) and 

p"' = - i V "'' Thus the initial condition (5) is the 
result of multiplying (1) by ( 1 - f3!) . The relation 
(7) takes on the form 

(9) 

We operate on (5) by the operator v 4 =-i a/at, on 
(9) by the operator H and subtract the results. Tak
ing into account that 

(10) 


