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A method is given for the determination of the general for~ of the s~atteri~ am~litude, 
providing a generalization of the usual formulas of phase-sh1ft analys1s. An mvm:1ant 
operational technique is developed which simplifies the calc~ations connected Wlth the 
expansion in terms of eigenfunctions of the total angular momentum. 

INTRODUCTION 

T HE problem of phase-shift apalysis is the 
determination of the general form of the 

scattering amplitude of particles of definite type. 
It is well known that in the simplest cases (spins 
0 and~) the scattering amplitude can be ex;pressed 
in terms of the phases of the scattered partial 
waves. A phase analysis establishing only the 
general form of the scattering amplitude cannot 
determine the concrete values of the phases. The 
values of the phases are determined either by 
solution of the dynamical problem of the scattering 
or by means of analysis of experimental d~ta. In 
spite of this, the general formula expressmg the 
scattering amplitude or cross-section in terms of 
a number of independent parameters is extremely 
useful, since on one hand it facilitates the analy­
sis of the experimental data, and on the other 
baud it reduces the dynamical problem of the 
scattering to the Jl"oblem of determining the phases. 

But in the more complicated cases (when the 
srin of the system exceeds .~ ) the !limple f?l'mulas 
o phase analysis are no longer vahd: For m-
stance, for the scattering of a nucleon by a nucleon, 
instead of real phases one must introduce complex 
phases fer the triplet states, a.nd the amplitu.de 
for photoproduction of mesons 1s not expressible 
in terms of phases at all. 

A second important point is the question of the 
foundation of the phase analysis. Ia the simplest 
cases the formulas of phase analysis have been 
obtained from a consideration of the asymptotic 
behavior of the solution of the Schrodinger equation. 
but for many important cases, in partie11lar ft>r the 
scattering of relativistic particles, the question of 
the existence of the corresponding SchrOdinger 
equation caDDot be regarded as settled. On t~ 
other hand it is obvious that the formulas ofthe 
phase analysis are applicabl~ also in those ~ases 
in which a Schrodinger equatton does not extst 
fort he system under consideration. 
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In the present paper a method is proposed fur 
obtaining the formulas of the phase analysis from 
an extremely general requirement, namely from the 
condition of the unitary character of the S -matrix. 
In the simplest cases this method leads to the 
well-known expressions for the scattering ampli­
tude in terms of phases. In other cases the 
scattering amplitude is expressed in a more 
complicated fashion, but a general procedure is 
indicated for determining formulas expressing the 
scattering amplitude in terms of the minimum 
number of independent parameters. 

An analogous program has been carried out 
in a number of papers devoted to the formal theory 
of nuclear reactions ( cf., for example, Ref. l ). 
But in the general case the formulas there ob­
tained have an extraol'diD&rily cumbersome appear­
ance becanse of tbe unfortUDate choice of the 
eigenfunctions of the total angular momentum. 
Instead of tbe expansion ia terms of eigen­
functions o£the ang~:~lar momeatam, we develop ill 
Sec. 2 a technique of invariant operators W. The 
expansioa of the varieus operators encountered in 
the scattering theory in t.enns of the operators W 
generalizes to the case of apia differeut from zero 
the usual expansion ia terms of LeReadre poly­
nomials for spin zero. The orthogonality condi­
tions, Eq. ( 2. 7 ), in a certain sense play the 
role of the addition theorem for Legendre poly­
ftOmials, and this makes it possible to use the 
operators I' for the seperation of the angular 
variables. The use of the invariant operators W 
frees us from the necessity of a definite choice 
of a coordinate system •ad spans a the cumber­
some calculations aaaociueti · Mtlt apherical 
functions involving sp.iJt. 

.lt mU~Jt k remarked daet the icvariant oper•tors 
J' are determined fer spia ~ iA Ref. 2 , aDd for the 
g.eneral ~ase i~ Ref. 3, wh~re .some of their proper­
ties are Investigated. Unhlte the previous treat­
ment 3 we do not use the apparatus of polarized 
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solid harmonics in determining the operators W • 
Since the problem of the present paper did not 
involve the calculation of the quantities W in 
explicit form, we have not definitely specified 
the forms of the eigenfunctions of the angular mo­
mentum, but have only used their orthogonality 
relations. The explicit calculation of the quantities 
W in closed form can be carried through by means 
of the generalized spherical functions introduced 
by Gel 'fand4 , which, in our opnion, should be 
included in the apparatus of theoretical physics 
along with the ordinary spherical functions. 

The calculation of the quantities W and the con­
sideration of the formulas of the generalized phase 
analysis will be the subject of another paper. 

1, THE S ·MATRIX AND THE SCA lTERING 
AMPLITUDE 

The scattering operator 0 , which transforms the 
incident wave into the sum of the incident and 
scattered waves, can he written in the form 5 

(1.1) 

where I is the identity operator, 8 + ( f ) = ~ 8 ( f) 
+ 1/2 rr i f , and the matrix R is a regular function 
of the energy. Since energy is conserved in the 
scattering, a description of the scattering requires 
only the value of R on the energy surface, i. e., 
those matrix elements of R for which the energies 
of the initial and final states are equal. 

The operator 

(1.2) 

considered on the energy surface, is called the 
S -matrix. In the theory of scattering it is shown 
that the S -matrix is unitary. 5 •6 

In what follows we shall consider only those 
scattering processes in which two colliding par­
ticles give two scattered particles, i. e., reactions 
of the type 

(1.3) 

We shall not, however, assume that c and dare 
particles of the same kind as a and b. In parti­
cular, they can have different masses, as for 
example, in photomesic reactions. When we speak 
of the complete set of states oft he system, we 
shall have in mind noth all possible initial states 
and also all possible final states that can be 
formed as a result of the scattering. For example, 
for the reaction 

we shall consider the initial state y + p and the 
final state rr + + n as different states of one and 
the same system. We note that the definition of 
a complete set of states is of a somewhat con­
ventional nature and depends on the degree of 
precision with which the given scattering process 
is treated. For example, in studring the scattering 
of rr-mesons by nucleons, one may to a high degree 
of accuracy neglect the radiative capture of the 
rr-meson. In this case the complete set of states 
of the system is the manifold of all possible states 
of the type" rr-meson +nucleon." If, however, 
we do not neglect the radiative capture, then it is 
necessary to include in our consideration also 
states of the type "nucleon + y -quantum." In 

this case four different processes--the scattering 
of the meson by the nucleon, the radiative capture 
of the meson by the nucleon and its inverse pro­
cess, the photoproduction of a meson, and also the 
scattering of light by nucleons- are united in 
a single scattering process. 

Accordingly, in considering any sort of scatter­
ing process, one must specify a system of states 
which can, to a certain .approximation, he re­
garded as closed with respect to this scattering. 
Only in relation to a closed system of states can 
one speak of the unitary nature of the S -matrix. 
Indeed, if we confine ourselves to an unclosed 
system of states, the concept of the unitary 
property of the S-matrix loses its meaning. Thus, 

for example, one cannot speak of the unitary 
property of the S-matrix describing only the process 
of photoproduction of mesons. 

Let us introduce dynamical variables defining 
the states of the system. It is convenient to con­
sider the reaction (1.3) in the center-of-mass 
system, in which the total momentum vanishes 

P = Pa + Pb = Pc + Pd = 0. (1.4 ) 

In what follows we shall assume that all quanti­
ties are referred to the center-of-mass system. 

We shall describe a complete set of states by 
the variables f , n, u , a. , where f is the total 
energy of the system, n is a unit vector directed 
along the momentum of one of the particles ( in 
virtue of Eq. ( 1.4), apart from sign, n determines 
the direction of motion of both particles ), u is 
the total spin variable of the system, and a. is the 
set of all other variables, which we shall not 
specify explicitly. In particular, the value of a. 
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determines the types of particles in one or another 
state. 

With a view to the application tot he scattering 
of relativistic elementary particles, we shall 
suppose that the energy l is conne~ted with the 
momentum p of one pariicle [ because of ( 1.4 ) 
the magnitude of p is the same for both particles ) 
in the state CJ. by the relation. 

c = Srx (p) = V p 2 + M~ + V p2 + f-t~, (1.5) 

where MCJ. and f.LCJ. are the masses of the particles 

in the state CJ. ( we use a system of units in which 
tr= 1, c = u. 

The matrix elements of the operator A will be 
denoted by symbols ( £ n a CJ.I A I e'n 'a' a.'). 
If, however, the operator is considered on the energy 
surface, i.e., for l =£',then we shall omit£ 
from the labels of the matrix elements. Thus an 
element of the S-matrix will be denoted by the 
symbol ( n a CJ. I S I n' a 'CJ. '), with the under­
standing that this quantity is a function of l • 

The connection between the S-matrix and the 
scattering amplitude is given by the relations 
( 1.1) and (1.2 ). In the coordinate representation 
these relations have the following form. If the 
incident plane wave is 

then at great distances the sum of the incident 
and scattered waves is equal to 

where p 0 = p0 n0 and pCJ. = p CJ. nCJ. are the momenta 

in the initial and final states, x= rn, and v 

=a (CJ. I ap is the relative velocity. Acco~ding 
to Eq. (1.5 ), the absolute values of the momenta 
are determined in terms of the total energy l 0 

by the relations 

The asymptotic expression (1.6 ) for the ,ave 
function is calculated in a well-.known way. 
It is only necessary to keep in mind that the 
operators (1.1 ), (1.2 ) are taken to be in the 
E -representation, and in the passage to the 
x -representation one must use plane waves, nor­
malized to a o -function of the total energy £ • 

By means of Eq. (1.6 ) one can easily find the 
expression for the differential scattering cross­
section 

dcrjdQ = I_F I2Va/V0 • 

Substituting the value ofF from Eq. (1.6), we 
obtain 

2. THE INVARIANT OPERATORS WAND THE 
EXPANSION OF 1HE S- MATRIX 

If no external fields act on the system, then the 
total angular momentum M of the system ( includ­
ing spin ) is conserved. In this case it is con­
venient to transform to a representation in which 
the quantities M2 and Mz are diagonal. This 
representation will be called the angular momen­
tum representation. 

We construct a complete orthonormal system of 
eigenfunctions of M 2 and Mz : Y~m ( n, a ), 
where j,m are the values of the total angular 
momentum and of its projection, and for a given j 
the index r runs through as many values as there 
are distinct independent systems of states with 
the total angular momentum j. For example, for 
the system of two nucleons the total spin takes 
the values 0 and l , and corresponding to this the 
index r runs through four values: one for the 
single state of the system and three for the triplet. 

The orthogonality condition for the functions 
Yj,.;, has the form 

~ ~ Yj~ (ncr) Yj;m' (ncr) dQ = OjjOmm•Orr•; 
(2.1 ) 

cr 

~ Yj~ (ncr) Y/m (n'cr') = Onn•Ocrcr'· 
jmr 

Here o n, , the o -function on the sphere, is 
defined by the equation 

~ Onn•f (n') dQ' = f (n). 

The S-matrix can be expanded in terms of the sys­
tem of functions Y: 

Jm 

(ncrot IS In' cr' ot') (2.2) 

= ~ ~ (jmrotJSij'm'r'ot')Y/m(ncr) Y?~·(n'cr'). 
jmr j'm'r' 

We now make use of the conservation of angular 
momentum and the absence of any favored 
direction in space, in consequence of which the 
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S -matrix in the angular momentum representation 
will have the form 

(jmrrxl s I j'm'r'rx') = (rrxl si I r'rx') Ojj'Omm'· (2.3 ) 

Here S; is a matrix with respect to the variables 
r, a., and depends on the value j of the total 
angular momentum, but not on the projection m. 
The relation (2.3 ) shows that in the angular mo­
mentum representation the S -matrix divides into 
diagonal blocks, sj corresponding to the various 
values of j. In concrete cases the matrices S. 
can be further broken down, by using, in addittion 
to the conservation of angular momentum, other 
conservation laws as well - conservation of 
parity, of isotopic spin, etc. We note that the 
system of functions Y~ with given jm and 

Jm ' d f various values of r is determme apart rom a 
unitary transformation. It is convenient to choose 
the functions Y~ in such a way as to secure the 

Jm ' S h most complete breaking up of the matnces i t .at 
is possible. For example, for systems cons1stmg 
of two nucleons it is convenient to choose them 
that the singlet states are separated from the 
triplets, and then owing to the conservation of the 
total spin the matrix S. breaks up into singlet 
and triplet parts. 1 

When Eq. (2.3 ) is used, we can write Eq. (2.2) 
in the form 

(ncrrxl S I n'cr'rx') (2.4) 

= ~ ~ (rrx/ s1 1 r'rx') wf"' (ncr; n' cr'), 
j rr' 

where 

wj" (ncr, n'cr') (2.5) 

i 

~ Y/m (ncr) Yj~ • (n'cr'). 
m=-i 

We indit;ate certain simple properties of the opera­
tors W~'. that follow directly fro!J1 the definition 
(2.5 ) and the orthogonality condition (2 .1 ) : 

Hermitian character 

(Wj" (ncr; n'cr')r = Wj'r (n'cr'; ncr), (2.6) 

orthogonality 

~ ~ dQ'Wf'' (ncr; n'cr') Wj(• (n'cr'; n0r0 ) 

cr' 

(2.7) 

completeness 

~ Wj' (ncr; n'cr') = 'Onn'ocra'· 
jr 

In what follows we shall need the equation 

~ wrr' 2j i 1 
L.J i (ncr; ncr)= - 4' Orr' 

1t ' 

" 

(2.8) 

(2.9) 

which foll~>Ws easily from the orthogonality con-
ditions (2.1 ) if we note that as an invariant 

function of the single vector n the left-hand member 
of Eq. (2.9) must be a constant. 

Taking into account the condition (2.8 ), we 
easily find for the operator R = S - 1 a representa­
tion analogous to Eq. (2.4 ) 

(ncrrxl R I n'cr'rx'). (2.10) 

where 

(rrx I /i I r'rx') = Orr'OrxO<'• 

In general, representations of the type (2 .4 ) 
exist for any operator invariant with respect to 
rotations. Such operators are characterized by the 
fact that in the angular momentum representation 
their matrices are diagonal with respect to the 
quantities jm and do not depend on m , i. e., 
are of a form analogous to Eq. (2.3 ). Therefore 
all of the considerations leading to the expression 
(2.4) hold for such operators. In the Appendix 
we shall make use of this remark to accomplish 
the separation of the angular variables. 

Let us consider the form of the operators 
W? for the simplest cases. For spin 0, the index 
r takes one value, which can be omitted. The 
functions Yjm (n) are identical with the ordinary 
spherical functions Y jm ( (J, cp), where (J and cp 
are the polar angles of the vector n. By means of 
~h~ addition theorem for the Legendre polynomials 
1t 1s easy to establish the equation 

2' + 1 W·(n· n')- -1-P· (nn') 
I ' - 4rr I ' 

where Pi ( x ) is the Legendre polynomial. 
(unnormalized ). 

(2.11) 

The case of spin ~ , corresponding to the 
system IT-meson +nucleon, is less trivial. As 
the functions yr. t k th h . I . . im we a e e sp enca spmors. 
The mdex r .takes two values ± , corresponding 
to the two d1fferent states with a fixed total 
~~gular momentum j , for which the quantity 
I 1s connected with the orbital angular momentum 
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l by the equations j = l ± ~ . The operators W have the following form: 

wj+ = 4~ [P~+';.(nn')-Pj_, 1,(nn')(crn)(crn')]; 

Wj- = 4~ [-P~_,1,(nn') +P~+'J,(nn')(crn)(crn')]; 
(2.12) 

Wf"- = 4~ [P~-'1• (nn') (crn)- P~+'l• (nn') ( crn')]; 

Wj+ = :rt [-P~+' 1,(nn')(crn)+P~-'I•(nn') (crn')]. 

In these equations Pz '( x) = ( d / dx) Pz ( x ), 
and a are the Pauli spin matrices. The operators 
( 2.12 ) are the same as the invariant polynomials 
defined in Ref. 2. For the system nucleon + 
photon the expressions for the operators W can be 
found in Ref. 3. We shall devote space here to 
the details of the determination of the explixit 
form of the operators W ; we merely remark that in 
the general case the operators can be calculated 
in closed form by means of Gel 'fand 's generalized 
spherical functions. 4 

3. UNITARY PROPERTY OF THE S-MATIDX 
GENERALIZED PHASE ANALYSIS 

We now consider the consequences that follow 
from the condition that the S -matrix be unitary. 

From Equation (2.3) it can be seen that the 
diagonal blocks S; must be unitary matrices. The 
condition that the matrices S. be unitary imposes 
definite connections on their' matrix elements, and 
thus- reduces the number of essential parameters 
involved in the general expression (2 .4) for the 
S-matrix. We assume that it is possible to carry 
out in a general form the further splitting up of 
the matrices S. into diagonal blocks. These 
blocks will al~o be unitary matrices, which 
leads to a further reduction of the number of 
essential parameters in the S-matrix. We consider 
the extreme case of complete splitting-up. 

In this case the condition that Si be unitary 
leads to the relation 

(r~ I si I r' ~') = exp {2iBjra} B,,, Baa'· (3.1) 

Here o are real numbers, and the factor 2 is 
jr ~ • d · b · placed in the exponent m or er to o tam a more 

complete analogy with the equations of phase 
analysis. Substituting (3.1) into the general 
formula (2.4), we find that in this special case 
the S -matrix has the form 

(ncr~ IS In' cr' cr'') (3.2) 

= Ba"' ~ exp {2ioirot} Wj' (ncr; n' cr'). 
jr 

From Eq. (3.2) the various formulas of phase 
anaJ.rsis follow as special cases. For the parti­
cle with spin zero, taking into account Eqs. 
(1.6 ), (2.10), and (2.11), we obtain the scatteriJlg 
amplitude F in the form 

F = ~ ~ (2j + 1) (e 2 i 8i- 1) Pi (nn0), 
2tPo . 

I 

which agrees with the well-known formula of 
scattering theory. 

For the system 11-meson +nucleon a complete 
splitting-up also takes place owing to the laws 
of conservation of parity and isotopic spin. The 
corresponding formulas of phase analysis can be 
found in Ref. 2. 

It must be pointed out that a complete breaking­
up of the matrices S . on the basis of the general 
conservation laws alone is possible only in ex­
ceptional cases. More generally speaking, only 
a partial breaking-up can be achieved. In this 
case the simple formula (3.2) must be replaced by 
the general formula (2.4). If in Eq. (2.4) the maxi­
mum possible splitting-up of the matrices S; 
has been carried out, then, using the unitary 
property, we can express the scattering amplitude 
of the partial waves in terms of a certain number 
of parameters. In the general case these parameters 
play precisely the same role as the scattering 
phases do in the simplest cases. Ordinarily 
the number of these parameters is not large, and 
we arrive in this way at a generalized phase 
analysis, the merit of .which is that withou~ the 
solution of the dynamical problem one obtams the 
general form of the scattering amplitude, containing 
the minimum number of arbitrary parameters. 

The actual values of these parameters can be 
obtained from the solution of the dynamical prob­
lem or by means of the analysis of experimental 
data. But even without fixing the values of the 
parameters it often turns out to be possible to 
draw certain general conclusions about the charac­
ter of the scattering, and in particular about the 
shape of the angular distribution. 

In the general case the differential scattering 
cross-section is expressed by the formula (1.7). 
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We state the expression for the total cross-section 
for an unpolarized beam, which is obtained from 
Eq. (I. 7 ) by integration over all final states and 
averaging over the spin of the initial state. Using 
Eqs. (2.6)- (2.10) and the unitary property of 
the matrices S . , we find 

1 

a= 11~\ ~(2j+1)[-Re(ri)(0 1Ri/rl)(0)].{3.3) 
oPo jr 

Here N 0 is the number of orientations of the spin 
in the initial state. For a particle with spin 
zero R = e 2 i o; - 1, and Eq. (3.3) goes over 
into theiwell-known expression of scattering 
theory 

47t "\.1 (2. 1) . 2 ~ a=-2 LJ J+ Slil Oj. 

Po 1 
APPENDIX. SEPARATION OF ANGULAR 

VARIABLES 

Using the equation of the stationary scattering 
problem7 as an example, we shall show how the 
separation of the angular variables can be carried 
out in the general case by means of the operators 
w. 

The scattering amplitude R (not on the energy 
surface j defined in Eq. (1.1), satisfies the 
equation 

(l) 

- (1/2 7i:i) (sna I R lzo n0 cr 0) = (sno IV j so no cro) 

+ ~·~ ds' dO' (sncr 1 vIs' n' cr') 
cr' 

We assume that the interaction Hamiltonian V 
is invariant with respect to rotations and conse­
quently permits an expansion analogous to Eq. 
(2.4). It is obvious that in this case R also has 
such an expansion: 

(sna IV Is' n' a') (2) 

=~~(srI V; Is' r') wj" (ncr; n' a'), 
j rr' 

(sncr J R Is' n' a') 

= ~ L (zr I Rj Is' f') wt (ncr; n' cr'). 
j rr' 

Substituting Eq. (2) into Eq. (l) and taking into 
account the orthogonality conditions (2.7 ), we 
obtain a system of integral equations in which the 
angular variables are eliminated. 

1 
-.-,---:(srI R; I so ro) = (zr I vi I Eo ro) (3) 

.:.1tl 

+ ~ ~ ds' (srI V; lz' r') o+ (s'- s0) (z'r' / R; I so r0). 
r' 

The system {3) takes the simplest form in the 
case of complete resolution of the matrices V; , 
i.e., when we have the equation 

In this case the system of equations (3) breaks 
up into individual equations involving the quan­
tities ( f r 0 I R; I f 0 r 0 ). 
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