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It isproved that for any given scattering matrix there exists a non-self-adjoint operator

defining the energy of the compound nucleus in

a simple triangular representation. The

relation between the decay of the compound nucleus and its spectrum is investigated.

N recent years a large number of purely mathe-

matical investigations have appearedl's, dealing
with the spectral theory of a wide class of non-
self-adjoint operators. In the general theory of
scattering there appears the ideaof a compound or
intermediate nucleus, which is formed duringthe
course of various nuclear reactions. Themain
property of the compound nucleus is to possess
complex energy levels or quasi-stationary states,
and in mathematical language this means that the
energy operator is not self-adjoint. The spectral
decomposition of a non-self-adjoint operator, dis-
covered by the present author®, proceeds by means
of the so-called characteristic matrix-function
which definesthe operator to within a unitary
equivalence-class. The present paper establishes
the existence of a close connection between the
scattering matrix® 1% of a compound nucleus and the
characteristic matrix-function of its energy-operator.
This makes it possible to construct the energy
operator of a compound nucleus when the scatter-
ing matrix is given. In addition, some new proper-
ties ofthe scattering matrix are discovered. The
energy operator is put into a triangular representa-
tion in which the equation of motion and the decay
of the compound nucleus can be studied and related
to the character of its spectrum ( discrete or con-
tinuous, etc.).

Previous knowledge of the mathematical papers
quoted above is not required for understanding the
present work.

1. THE ENERGY OPERATOR OF A COMPOUND
NUCLEUS

To explain the essence of our method we con-
sider the simple case of a purely elastic scattering
reaction described by a + X> C > X + a. Here a
is the incident particle, x the target nucleus and C
the compound nucleus. There is only one channell$,
and there are no external fields.

The wave function z(r)(0 <r < ) of this sys-
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tem can be represepted as a vector with two com-

ponents ¢(r) and /(r) defined by

. (r) . {ao (eﬁikr S (W) eik-r) r> R, (1)
oo r<R,

(0 r>R, (2)
U(r) =< <

\lch"ﬁ (r) r<<R (n< o).

j=0

Here K is the wave number, and W = h2K2/2pL. The
¥ .(r) are a complete orthonormal set of wave-
functions for the compound nucleus in the interval
(0, R), the C_ are constant coefficients, and R is
the channel radius'®. The Hamiltonian* may ac-
cordingly be written as a 2 x 2 matrix

T I
I A
where T = —(h2/2;1)( d?/dr?) is the Hamiltonian

in the center-of-mass system in the absence ‘of

interactions. A is an operator acting on the wave-
functions ¢y (r)(r <R) inside the compound nu-
cleus, and the operators I and I'* describe the
probabilities for decay and formation of the com-
pound nucleus.

The function ¢(r) may also be written

(e—iK(r—R) (3)

o (r) = const

— S, (W)X (r>R),

where S (W) = e®*®Rg () describes the resonance
scattering associated with the formation of the
compound nucleus. We call the function So( W) the
reduced (one-dimensional ) scattering matrix. Intro-
ducing the functions

* Here we used the method of Bethe15 with some minor
alterations.
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¢, (r) =sinK (r — R),
oy(r)=cosK(r—R) (r>R),

[cpl(r) = cpz(r) =0 for r <R], we may represent
¢(r) in the form

o (r) = awy (r) + b, (r) + i, (1)]. (4)

The function ¢(r) has a discontinuity at R of mag-
nitude b = (R + 0) -~ p(R ~0).

Consider the wave-equation

e al o) =¥ (o)

P‘
which separates into the two equations

To+TY = Wo, )

P*@ -+ Atb = W, (6)

Equations (4) and (5) imply*

¢ B2 42 (7)
(0, 0) =@ (0 (W + 3 73) 2 () dr
0
R4 42
= | o —Randr
R—c¢
= (h%/21) o1 (R) = — (h*/2p) OK .
Next, Egs. (2) and (7) give
. 2u (8)
= TR 20 = (1Y}, 0,)).
j=1
In the same way we can prove that (I’ 1/; (92) =0.

Hence we deduce from Egs. (6) and @’

al*o; + bI"g, + b0, + Ab = Wo. (9

+

Multiplying Egs. (2) and (9) by ¢, (r) and integrat-

ing, we find

a (o, Or) + b (T, by) (10)

+ b (o, bg) + (A, ) = Wep.

* The symbol
(=~
(@, 0)={ v (r)u(ryar
0
represents a scalar product. The function b6”(r —R)
arises from double differentiation of the simple discon-
tinuity.

Since
Ty, br) = (e, TO) =1, (k=1,2,...,n),

(T09, 9r) = (g, T'br) =
equations (8) and (10) lead to

a'}’;; thZC']“fk‘I"ZAJkC _W(; (11)
i= j=1
with A].k = (A‘/’,-- ¥,).
Let f be the vector with components ¢ , €45 - - -

c ., and let the operators 4, B, H, H* be defined by

[4f], = ZAjkcj (12)
j=1
(BT, = }JcBBk 8, = V2K ),
H=A4+iB, H =A—iB,
where[Af]k, [Bf]k (k=1,92,...,n) are the com-

ponents of the vectors Af, Bf. Equation (11) can then

be written in the form

H'f —Wf =g, (13)
go= —aVIK/2e Ba}ie .
If a = 0, there is no incident wave, and the equa-

tion H*f = Wf defines the complex-levels and quasi-

stationary states of the decaying compound nucleus.
The equation of motion of the compoundnucleus is

ihdf | dt = H'}. (14)

2. THE SCATTERING MATRIX

We now calculate the scattering matrix. If e is

the vector e = {\/—in 2_1 Eq. (12) gives*

—i(H—H)f =2 388, = (e, (1D
Equations (4) and (8) ir;;iy
o (r) = (€ R — gy THTR (16)

VZ&L (£, 0 jike—R)
BPK V3 ’

* Here (f, e) —En_l =\/527=1cj,3‘1‘. is the scalar

j
product.
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while Eq. (13) gives

f=H —WI)"g, a7)

_ a h2K M -1
= —V—.——Z_ V__2§L (H"— W[) e.
Thus the function cp(r) becomes

o (KR e (18)

® (r) —i[((r—R))

+ 5 (H'—WI) e, e) e

_ _%{e—iK(r—R)
— [l i ((H*— W) e, e)] X=Ry,

Comparing this with Eq. (3), we obtain the following
expression for the one-dimensional scattering
matrix

So(W)=14i((H'—WI)le,e), (19)
S(W) =e**Rg, (w). (20)
The cross section for resonance scattering'®
Opes= A2 | 1— S, (W) [? (21)
= m2| (H'— WI) e, e) 2.

It is clear from Eq. (15) than an arbitrary vector f
is either annihilated by the operator —i (H — H*)

or is transformed into a vector parallel** to e. In
addition, we have the inequality

(—iH—HY, )=, e)>0.  (22)

The function S (W), related tothe operator /
by Eq. (19), is calledthe characteristic function of
H. Tt was studied in a number of papers!:2:%:7 on
the theory of non-self-adjoint operators. We quote
without proof some of the main results of the theory.
1. The function So (W) determines H to within
a unitary equivalence-class. Thus the scattering

** The departure of the operator H from Hermiticity (the
rank of non-Hermiticity) is characterized in this case
by a single vector e, because there exists only one
reaction channel. In Ref. 5, operators with arbitrary
rank of non-Hermiticity are considered » The rank of non-
Hermitcity is equal to the number of channels.

matrix completely determines* (in the quantum
mechanical sense) the motion of the intermediate
nucleus C. Later we shall show how, given So w),
H or H* can be constructed in their simplest repre-
sentation, which is one in which they become
triangular matrices.

2. SO(W) is an analytic function of W.

3. The identity

=[S W)r (23)
= W—’;W— (Rwe, Rwe) (Im W ==0),
holds, implying that
1—]So (W)[P>0, (ImW >0). (24)

Here R - denotes the operator ( H* ~— wi)-L.

4. The eigenvalues W = Ek + %i Fk(k =1,2, ...
of H lie inthe upperhalf-plane and are roots.of
the equation S (W)y=0

5. The continuous spectrum of H (if it exists)
lies on the real W-axis. A real value of W belongs
to the continuous spectrum if 1 — [S (W +i0)|2
> 0. Intervals inwhich 1 — | S (W +:0) |2 =0 con-
tain no continuous spectrum. If 1—[S,(W+i0) |2
> 0 with W > 0, then there exist alternatlve reaction
channels which have not been considered. Equa-
tion (14) implies

dl({t d(f,f) \/d_{’f>+(f’%)

= — - (H'f, )+, H'])

171 )
— (T = f).
From Eq. (22) we have

d|fPjdt = —h|(f, e P <O (5)
and therefore the total decay probability (for one
particle and per unit time) is

* This result is important in connection with the S-
matrix theory of Heisenberg (see Ref. 17).

results (1-5) are proved under the assumption that e is
independent of W.

In Ref. 5, the
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(26)

P=he, &) == 3|3
j=1

This quantity can be calculated directly from S (W).
In fact, Eq. (19) implies*
So(W)=1+iW(H'W1—1)"e, e)
=1—iWl[(e,e)+Wt(H, e)4...],
from which it follows that

P=_L

- lim W1 —8, (W) ] (27)

W - oo
r . ,
= —residue SO (“/)
hl o
Next we derive a formula for the fopulation qof com-
pound nuclei existing per unit volume during a sus-
tained scattering process. Comparing the well-

known expansion'® of a plane wave eK% into
spherical harmonics with Eq. (4), we obtain
la|=1/K. (28)

The state of the compound nucleus is defined by the
vector f = Ry g, according to Eq. (13). Hence, ¢
becomes

q=1FP = (n*/2eK) (Rye, Rp),
which by Eq. (23) may be written
g = (B*/2pK) lim (1 —[So (W + iy) |*/2y).
y >

Hence the formula for ¢

1=—[5 15V +i)]] 9)

3. A FINITE NUMBER OF COMPLEX LEVELS.
TRIANGULAR MODEL.

y=0"

We shall find the energy-operator H* of the com-
pound nucleus, in the case when this operator pos-

sesses a finite number of eigenvalues Wi =E,

- l/ziFk (k=1,2,...). According to the results
4 and 5 above, the reduced scattering matrix S (W)

is of the form
n oy v7

— Wp
So(W) =1]] T
he=1 k

(30)

ﬁ W—E, —(i/2) T,
= V —E, + (i/2)T,
Pt 14 r 2T,

* It is assumed that the spectrum of H does not ex-
tend to infinity.

By choosing a particular orthonormal basis l/lk(r )
(k=1,2,...,n) for the wave-functions of the
compound nucleus, we can reduce the operator /*
to triangular form. Thus

n

dv= D) (H)ie; ((H)j=0,j>Fk).

=1

(31)

The elements (H* )kk on the principal diagonal* co-
incide with the eigenvalues (H* ) x =W*. We now

derive the remaining elements (4/* )kj(j <k). We
observe that the operator g=—i(H—H*)fis de-
fined by the equations
1 1
d1:F101+7H1202+---+TH1nCn’ (32)

1 *
dzz——l‘—H1201+I‘262+"'+

dy = — o Hint, — = Hineo— . . .+ Tt
Comparing Egs. (32) with (15), we obtain
21812 =T, Hp=2i%8% (j<4).
Hence
Hjp =i VT Trexp {i (o, — @)} (o = arg8)).
Replacing the functions Y, (r) by ¥, (Dexpliy, §,

we have
(H')j=Hjp=— i VT s

Thus the operator g = A*f takes the form

dk == <Ek —%Flt) Cr
h—1

—i QVTiTe; (k=1,2,...n).
i=1

The operator (33) is uniquely determined by the
roots of the function SO( W). In the simplest case

of a single root, the system (33) reduces to one
equationd | = (£, - 4" ) ¢ 1
So(W)y=W—E—(2r,
W —E, +@/2)r,

and the cross section becomes

(33)

6. = m)2 1_% ?
Res . W—E +(@2)T,

Iy
(W—E)® +T2/4

:TJ2

* See Ref. 19 for the reduction of finite matrices to
triangular form.
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(Breit-Wigner). The motion of the compound nucleus
is given by
lhd()l/df = (El - l/girl)cl»
so that
¢y (1) = ¢q (0)e—HE/ he—(Ty/2h)t
and Fl/h is the decay probability. For an arbitrary

number of levels, the decay probability becomes by
Eq. (27)

o V=W, (34)
P—— limW |1 — —
W o0 ILZ:IW—WR
1 & ”
= ,__J lwh_Whl ZI‘k

R=]
The total decay probablhty is equal to the sum of
the probabilities for the individual levels, as one
would expect.
4. CONTINUOUS SPECTRUM OF THE COMPOUND
NUCLEUS. TRIANGULAR MODEL

Suppose that the number of complex levels
=EM 2 nirW(k=1,2,..

indefinitely, and that in the limit as n » o the
numbers E;c") fill a certain interval a < £ < & con-
tinuously. If the decay probability P of the com-

pound nucleus is held fixed, then by Eq. (34) the
r (n)

Wl(,c”) ., n) increases

must tend to zero as n > oo. Introducmg the

step -function

pnlE) = T\EM, — EP  (EWE < E{;

B =, B2, —0)
and using Eqs (34) and (30), we obtain

=h 2 Pn n) (E hf1— 5:7)),
he==]
n (my (B — Em
sy =11 1 — i B G = BD
k= W — L(”) _|_ F(”)
Since E;’Ql - E(") >0and [ (") >0 asn > o, we
have
Pn (E(ﬂ)) (E(”) E%ﬂ))

1 —i

W — E;am + '2_ I‘jc”)

Pn (E(n)) (E 'l) —
— 1

= exp W— b}{”

Eg;w)_}

fromiwhich it follows that as n > «~ the function
S{™ (W) tends to the limit

b (35)
So (W) = expl—z\ W— }
The total decay probablhty is
1
P =L, (36)

and the probability for decay P (E, E + dE) be-
longing to the interval (£, E + dE) is given by

P(E, E4dE) = h7p (E)dE. 37)

If the compound nucleus has both a continuous
and a discrete ( complex) spectrum, the reduced
scattering matrix has the form

So (W) (38)
2 W—E (l/))F ( bp(E)dE
_H W—E, + (2T, e"pl_‘ﬁw—t}‘

a

It is interesting that the density A" 'p (E) of decay
probability can be found directly from the function
S, (W). Taking the loganthm we find

W—W
In| Sy (W)|=1In :
180 (W) | = !Hv_Wkl
b B
p (E) dE -
—f—ImSW  (mW=£0),
and the Stieltjes inversion formula?® then gives

hlp(E) = — (1/h=) In| Sy (E — i0)].  (39)

Next we determine the operator H* in the case of a

pure continuous spectrum, passing to the limit in
the equations

R—1

~ — 2 CJ’I)VF(H)F(”)

j=1

(En ——P

We define the step-functions

fn(E) =", pn(E) =T /EM,
/
(ER <E<Eh,

—Ef"
b —
Eh—}—l - Egcn) - ‘Ta>

and obtain in the limit as n » o the following repre-
sentation for the operator g = H*f,

g (E) = Ef (E)

E

S 16 VD@ p(E)

(40)

(E)d: (a<<E<b).
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The corresponding equation of motion* is

of (E *t)

th=—"—=Ef(E,t) (41)

E
~i\fe 0Vr@rEE

In this case also the equation of motion is de-
termined uniquely by S, (W).

5. DECAY OF THE COMPOUND NUCLEUS IN THE
CASE OF A CONTINUOUS SPECTRUM

If f(E, t) satisfies Eq. (41) and g (E, ¢ ) satis-
fies the adjoint equation

.. dg
th; = Eg(E, t) (42)

b
+i{g@nVo@rE &,

E
the scalar product (f, g) is constant in time. Ex-

plicitly,
0 (.5)+(. %

= 5 (H°'F, g)— = (7, Hg) = 0.

It follows that

[F1e>](For g0) |18 | (43)
holds, where
Ifli=tlifg§lf(5,f)lzd5,
»
gl =1im{|g (£, 1) ak,
fo=T(E;0), go=g(E,0).

We shall show that the initial state fo=f(E, 0)
can decay incompletely** :

b

IimS]f(E, t)|2dE > 0.
t+oo

This means that after all decaying waves are re-
moved there remains a certain population of nuclei

* Similar equations can be derived (see Ref. 5) for
any number of reaction channels,

** We give later a quantitative estimate of this limit.

which do not decay into the channel which is under
consideration. Such a phenomenon obviously can-
not occur when there exist only complex levels.
A solution of Eq. (42), or of
ih G = Hg (Hg=Eg(E)
b

+i\e®Vr@pE &)
E

(44)

can be obtained fromthe formula

gE, t)=— (45)

1

oo Se— i (H — 1) gydh,
3

where y is a contour enclosing the spectrum a

< E < bofH Itis easy to verily Eq. (45). Putt-

ingg, = e and using Egs. (45) and (19), we have

(g, €) = — %Se— Delh ((H — M ) le,e) )

v

1 . - *

= Ege— ae/n (S5 (") — 1) dh.

3

When the contour y is contracted onto the interval

a < E < b, this becomes
b
1 cpg s *» .
(g, ) = 5= \ e~ B[Sy (E + i0)

a

(46)

— Sy (E — i0)] dE.

Equation (25) when applied to the operator H be-
comes d | g|¥dt=h!| (g, e) |2, and therefore

lm2=mu“kiygmww (47)

iEt

|S " Sy (E + i0)

a

=Jg0 +E

°m8

o (E—i0)] dE | *dt <[ g,|?

ZLK’S (E —i0) |,

The initial state f, is given by Eq. (13),

AR
h=—xV 7 #

and the scalar product is given by

t—Wi)te,
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The equation of motion is

2 SO (H — WD) ee) [ (48)
| (for €0)1 ZMKI(( ) | YT K
, in 225D — Eof(x, t)—sz(E, tyds. (55)
= g 1—So (W) 2. 0
* . Using Eq. (45), it is easy to obtain the solution
From Egs. (47), (48) and (43) we derive the in- f(x, t) of Eq. (55) corresponding to the initial con-
equality dition f(x, 0) = f, (x):
o> W 1—So(W) | 2/K? [nP (49) [ (x 1) = e B o (x) (56)
b
= 180 (E + 10) — S (E — i0) [ dE] . Sfo()Mde}
a Vx—E ’

here, by virt f the Stieltjes i ion f
where y virtue o € 1€ JeS inversion ormula, ) where Jl()\) iS a Bessel function.
| So (E + i0) — Sy (E — i0) |
(50) 7. EFFECT OF AN EXTERNAL FIELD ON THE

— o0 (E) — o—mp(E), COMPOUND NUCLEUS SCATTERING MATRIX

6. A DEGENERATE REAL LEVEL In Secs. .1—6 we obtained tl‘le general. properties
of the amplitude of the elastic scattering process
Returning to the case of a finite number of com- a+X->C-»X+al(ais the incident particle and X
plex levels, we may take in particular W n) the target), assuming that the scattering is caused
by the formation of the compound nucleus and b
(n) (n) (n) y p y
=Wy = =W =k + %™, and derlve an impenetrable-sphere interaction. The effect of a
(ny \n spherically symmetrical potential can be included
( W—Ww; (51) . . ;
(W) = —_— by the following simple argument. We suppose that
W—W, for r > R _the interaction between a and X is de-

AN @) n scribed lfy a potential V' (r), while for r <R _ the

= <1 — W_E _: 2T ) . compound nucleus C is formed and can be described
° e by a non-self-adjoint operator. Here r is the dis-
tance between @ and X, and R _ is the radius of C.
The radial function U () (r> R .) corresponding

The corresponding operator g = H*f becomes

d(n) (EO + < 5 F(fl)>c(ﬂ) 12 c(n)F(") (52)

to angular momentum [ satisfies the equation

and the decay probability is P = (n/h ) Ff)"). We g.i;ijzi [W 2’12 l(lr_*; ) 57)
r m

fix P and let n > ~. Since Ff)") = hP/n -0, we .

have W;‘") » E . Equation (51) gives the following — V(r)] Ui(r)=0

expression for the one-dimensional scattering
matrix in the case of a degenerate real level

Let El(r) be the solution of Eq. (57) satisfying

the initial conditions E (R ) =1, E/ (R ) = iK.
So (W) = exp {— ihP/W — E}. (53) Then

We define step-functions f (%) (0 < x < hP) by

U, (r) = const {E; (r) — S (W) E, (r)}. (58
f(£) =2 (k= 1)hP/n < x < KhP/), (k 1) (= ST B} )

=1,2,...,n), and then pass to the limit in Eq. Since at r = Rc we have
(52). The energy operator corresponding to a " ]

. r—RQ) v iK (r —RC) s
single infinitely degenerate real level E0 is thus E((r)= e <, El (r)=le 1,

(54)

X
H'[ = Eof (x) —i \ fEdE (0L x << hP). the function SEC) (W) may be regarded as the ampli-
0

tude of pure resonance scattering caused by the
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formation of the compound nucleus C in the ab-
sence of a potential. On the other hand, as r »
we have the asymptotic relation

U, (r) = const {e— i Kr —In/2)
1) = const {e (59)

— 81 (W) ei kr—tmi2y,

where §; (W) is the total amplitude, including the -
effects both of the compound nucleus and of the po-
tential. In the case of a short-range potential

[V (r) =0 for r > R] the function U,(r) can also
be presented in the form

U (r) = const {U{™ (r) (60)
—SiW) Ui} (r>R),
where U(lﬂ(r) and Ut(") (r) are the solutions of
Eq. (57) which are asymptotically of the forms
U§+)(r) ~ ei(Kr- 117/2)' Ug—)(r) ~ e HKr— lﬂ/2).
Comparing the values of UI(R) and dUl/d"r_-R
obtained from Egs. (58) and (60), we find
St (W) = @i (W) — by/ (0117 (W) — a),
with

dE; dvi?
altWUl —E; dr |r=R’
dE; (., L du§)
by = Ui Ev— 1 _x

In this way the scattering amplitude with an ex-
ternal potential appears as a fractional linear trans-
formation of the amplitude Sg"')(W), and the coeffi-

cients a;, @}, b, b% can be computed if the potential

V(r) is given. If the com;)ound nucleus C has the
complex energy-levels W;' » then by Eq. (30) the

amplitude S, (W) is

$W%=ﬁ

=1

W—E{"—(@2)rh -
W—E® 4 @2 rh

Recently, various attempts have been made to
unify the idea of a compound nucleus with the
theory of nuclear shells?!, so it is interesting to
consider the case in which the compound nucleus C
possesses in a certain energy interval a'large: /
number of almost equally spaced levels W,' =W,

+jD+il'/2(j=1,2,...,n), where D is the

mean level spacing and I" the mean width. In this
case

n A—(W—w,—-ir)/iD
SO 11 (v—wgr))
it —(W—Wot 5T)/ip
IfI'/D << 1, we have approximately
: i
S(IC) _ smn(W—— Wo— 5 P)/D
: i '
smn(W— Wost 5 F)/D
In conclusion, I express my thanks to M. M.

Al’perin for valuable discussions while this work
was in progress.
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