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It is proved that for any given scattering matrix there exists a non-self-adjoint operator 
defining the energy of the compound nucleus in a simple triangular representation. The 

relation between the decay of the compound nucleus and its spectrum is investigated. 

JN recent years a large number of purely mathe-
matical investigations have appeared 1- 8 , dealing 

with the spectral theory of a wide class of non­
self-adjoint operators. In the general theory of 
scattering there appears the idea of a compound or 
intermediate nucleus, which is formed duringthe 
course of various nuclear reactions. The main 
property of the compound nucleus is to possess 
complex energy levels or quasi-stationary states, 
and in mathematical language this means that the 
energy operator is not self-adjoint. The spectral 
decomposition of a non-self-adjoint operator, dis­
covered by the present author 5 , proceeds by means 
of the so-called characteristic matrix-function 
which defines the operator to within a unitary 
equivalence-class. The present paper establishes 
the existence of a close connection between the 

. . 9 - 16 f d l d h scattenng matnx o a compoun nuc eus an t e 
characteristic matrix-function of its energy-operator. 
This makes it possible to construct the energy 
operator of a compound nucleus when the scatter­
ing matrix is given. In addition, some new proper­
ties of the scattering ·matrix are discovered. The 
energy operator is put into a triangular representa­
tion in which the equation of motion and the decay 

of the compound nucleus can be studied and related 
to the character of its spectrum (discrete or con­
tinuous, etc.). 

Previous knowledge of the mathematical papers 
quoted above is not required for understanding the 
present work. 

1. THE ENERGY OPERATOR OF A COMPOUND 
NUCLEUS 

To explain the essence of our method we con­
sider the simple case of a purely elastic scattering 
reaction described by a + X-> C -> X + a. Here a 
is the incident particle, x the target nucleus and C 
the compound nucleus. There is only one channel16 , 

and there are no external fields. 
The wave function u ( r) ( 0 < r < oo) of this sys-
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tern can be represeJlted as a vector with two com­
ponents qJ( r) and t/J ( r) defined by 

{
a (e--iKr _ S (W) eiKr) 

9 (r) = Oo 

( 0 r>R, 
w (r) = J n 

' ) ~ Ci'fi (r) 
L=o 

r<R 

r>R, 
r<R, 

(n~ =). 

(l) 

(2) 

Here K is the wave number, and W = h 2K 2/2f1. The 
t/1 i ( r) are a complete orthonormal set of wave­
functions for the compound nucleus in the interval 
( 0, R ), the C i are constant coefficients, and R is 

the channel radius 16 • The Hamiltonian* may ac­
cordingly be written as a 2 x 2 matrix 

II~· ~II 
where T =-(h 2/2f1)(d2/dr 2 ) is the Hamiltonian 
in the center-of-mass system in the absence ·of 

interactions. A is an operator acting on the wave­
functions t/J ( r) ( r < R) inside the compound nu­
cleus, and the operators [' and I'* describe the 
probabilities for decay and formation of the com­
pound nucleus. 

The function qJ( r) may also be written 

rp (r) = const (e-iK(r-R) (3) 

-So ( W) eiK(r-R)) (r > R), 

where S0 (W) = e 2 iKRS(W) describes the resonance 
scattering associated with the formation of the 

compound nucleus. We call the function S 0 ( W) the 
reduced (one-dimensional) scattering matrix. Intro­
ducing the functions 

* Here we used the method of Bethe 15 with some minor 
alterations. 
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cp1 (r) =sinK (r- R), 

cp 2 (r} = cosK (r- R) (r > R), 

[ cp 1 ( r) = cp 2 ( r) = 0 for r < R], we may represent 

cp(r) in the foro, 

cp (r) = arh (r) + b [cp2 (r) + icpl (r)]. (4) 

The function cp( r) has a discontinuity at R of mag­
nitude b = cp(R + 0)- cp(R- 0). 

Consider the wave-equation 

which separates into the two equations 

r·(!) + Aw= Wu 
I 4 1• 

Equations (4) and (5) imply* 

(5) 

(6) 

Since 

(I,.cpl, ~k) = (91• r~k) = ~~ (k = 1, 2, ... , n), 

(f*cp2, '1k) = (92, r~k) = o, 

equations (8) and (IO) lead to 

(11) 

with A ik = ( Atj;i' tj; k ). 

Let f be the vector with components c 1 • c 2 • · • • , 

c n' and let the operators A, B, H, H* be defined by 

n 
(12) 

i=l 
n 

1=1 

H=A +iB, H*=A-iB, 

where [Af]k' [Bf]k ( k = l, 2, ... , n) are the com-

<X> 

\ ( h2 d2) (f~, cp1} = j rp1 (r) W + 2 fL dr2 cp (r) dr 
(7) ponents of the vectors Af, B f. Equation (11) can then 

be written in the form 
0 

R+< 

= ~ :; bo' (r- R) cp1 (r) dr 
R-e 

= (h2/2p.) cp~ (R) =- (h2j2p.) bK. 

Next, Eqs. (2) and (7) give 

(8) 

i=l 
In the same way we can prove that ( [' tj; ., cp2 ) = 0. 
Hence we deduce from Eqs. (6) and (4) 1 

(9) 

(13) 

go=- a Vh2K/2fL {~k}~=l· 
If a= 0, there is no incident wave, and the equa­
tion H*f = Wf defines the complex-levels and quasi­
stationary states of the decaying compound nucleus. 
The equation of motion of the compound nucleus is 

ihdf I dt = H*f. (14) 

2. THE SCATTERING MATRIX 

Multiplying Eqs. (2) and (9) by tj;k (r) and integrat- We now calculate the scattering matrix. If e is 

ing, we find the vector e = h/2{3 k I ~=l' Eq. (12) gives* 

(10) 

*The symbol 
00 

( u, v) = ~ v * ( r) u ( r) dr 
0 

represents a scalar product. The function bo' ( r- R) 
arises from double differentiation of the simple discon­
tinuity. 

n 

- i (H- H*) f = 2 ~ ci~;~k = (f, e) e. 
j=l 

Equations (4) and (8) imply 

( ) a ( iK(r-R) )-iK(r-R) (!) r =-: e -e 
' 2t 

(15) 

(16) 

-v 2[L (/, e) iK(r-R) 

- h 2K V2 e ' 

* Here (f, e)= I~-l e*. c.=· '2I'.' 1c. R*. is the scalar 
J- J J v .. 1 = 1fJ 1 

product. 
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while Eq. (13) gives 

f = (H*- W!pg0 (17) 

=- a_v 1z2K (H*- WI)-Ie 
V.2 211- • 

Thus the function cp( r) becomes 

( ) a ( iK(r--R.) -iK(r-R.)) rp r = 2i e -e (18) 

+ ~ ((H*- W!fle,e)eiK(r-R> 

= _ ~ {e-iK(r-R.) 

- [ 1 + i ((H*- W If! e, e)] eiK(r-R.>}. 

Comparing this with Eq. (3), we obtain the following 
expression for the one-dimensional scattering 
matrix 

S0 (W) = I + i ((H*- w 1r1 e, e), (19) 

S (W) = e-2iKR. S0 (W). (20) 

The cross section for resonance scattering16 is 

(21) 

It is clear from Eq. (15) than an arbitrary vector f 
is either annihilated by the operator - i ( H - H* ) 
or is transformed into a vector parallel'** to e. In 
addition, we have the inequality 

(-i(H-H*)f, f)= j(f, e)I2 :>0. (22) 

The function S 0 ( W ), related to the operator H 
by Eq. (19), is called the characteristic function of 
H. It was studied in a number of papers 1 •2 •5 • 7 on 
the theory of non-self-adjoint operators. We quote 
without proof some of the main results of the theory. 

l. The function 50 ( W) determines H to within 
a unitary Pquivalence-class. Thus the scattering 

** The departure of the operator H from Hermiticity (the 
rank of non- Hermiticity) is characterized in this case 
by a single vector e, because there exists only one 
reaction channel. In Ref. 5, operators with arbitrary 
rank of non-Hermiticity are considered • The rank of non­
Hermitcity is equal to the number of chl'lmels. 

matrix completely determines* (in the quantum 
mechanical sense) the motion of the intermediate 
nucleus C. Later we shall show how, given S 0 (W ), 
H or H* can be constructed in their simplest repre­

sentation, which is one in which they become 
triangular matrices. 

2. S0 (W) is an analytic function of W. 
3. The identity 

I -[So (W) 12 (23) 

w-w· 
----,--- (Rwe, Rwe) (Im W =!= 0), 

holds, implying that 

I -I So (W) 12 > 0, (Im W > 0). (24) 

Here R w denotes the operator ( H* - Wl)- 1• 

4. The eigenvalues W k = E k +~irk (k =1,2, ... ) 
of H lie in the upper half-plane and are roots. of 

the equation S 0 ( W) = 0. 
5. The continuous spectrum of H (if it exists) 

lies on the real W-axis. A real value of W belongs 
to the continuous spectrum if 1 - I S 0 ( W + iO) 12 
>0. lntervalsinwhich 1-IS0 (W+iO)I 2 =0con­

tain no continuous spectrum. If 1 - IS 0 ( W + iO) 12 

> 0 with W > 0, then there exist alternative reaction 
channels which have not been considered. Equa­
tion (14) implies 

d I I I 2 = d (/, /) = f !!1_ t) + (t df ) 
dt dt \ dt ' ' dt 

=- ~ (H"f, f)+* (f, H*f) 

t ( t ) = - 'li: i (H - H*) f • f · 

From Eq. (22) we have 

(25) 

and therefore the total decay probability (for one 

particle and per unit time) is 

* This result is important in connection with the S­
matrix theory of Heisenberg (see Ref. 17 ). In Ref. 5, the 

results (1-5) are proved under the assumption that e is 
independent of W. 
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n 

P=h-1(e,e)=! ~~~il 2 • 
(26) 

i=l 

This quantity can be calculated directly from 5 0 ( W). 
In fact, Eq. (19) implies* 

S0 (W) = I + i\\7 ((H*W- 1 -I) 1e, e) 
= I- iW-1 [(e, e)+ w-r (H*e, e)+ ... ], 

from which it follows that 

p = _!___ lim W 11- So (W) I 
h w~oo 

(27) 

1 
= --:-residue S 0 (\\?). 

hl W ~oo 

;\/ext we der~ve? f?rmula for.the ropulati~n qofcom­
pound nucler exrstmg per umt vo ume dunng a sus-
tained scattering process. Comparing the well-

. I 8 f I tK z . t known expansiOn o a p ane wave e m o 
spherical harmonics with Eq. (4), we obtain 

Ia I= 1/K. (28) 

The state of the compound nucleus is defined by the 
vector f = Rwgo according to Eq. (13). Hence, q 
becomes 

which by Eq. (23) may be written 

q = (h2/2ttK) lim (I -I S0 (W + iy) l 2/2y). 
y ~ 00 

Hence the formula for q 

(29) 

3. A FINITE NUMBER OF COMPLEX LEVELS. 
TRIANGULAR MODEL. 

\Ve shall find the energy-operator H* of the com­
pound nucleus, in the case when this operator pos­
sesses a finite number of eigenvalues ll>t = E k 

- 7:; i 1\ ( k = l, 2, ... ). According to the results 
4 and 5 above, the reduced scattering matrix S 0 (W) 
is of the form 

n W-W" 
So(W) =IT W--w· 

h=l " 
(30) 

n t\7- E"- (i/2) I\ 
= II w- £" + (i/'2) r" · 

k=l 

*It is-assumed that the spectrum of H does not ex­
tend to infinity. 

By choosing a particular orthonormal basis t/J k ( r ) 

( k = 1, 2, ... , n) for the wave-functions of the 
compound nucleus, we can reduce the operator H* 
to triangular forn1. Thus 

n 

dh = ~ (H*),,ici ((H*)hi = 0, j > k). (31) 
i=l 

The elements ( H*) k k on the principal diagonal* co­
incide with the eigenvalues (H* )kk = W*k·. We now 

derive the remaining elements (ll* )kj (j < k ). We 

observe that the operator g = -i ( H- H*) f is de­
fined by the equations 

1 1 
d1 = f1c1 + i H12C2 + ... + i HlnCn, (32) 

1 • 1 
9.2 =- T Hr2Cl + r2c2 + ... + i H2nCn, 

•••••••••• 0 ••• 0 •• 0 ••• 

i * 1 * 
dn =--:- Hrnc1 ---:- H2nC2- ... + fncn. 

l l 

Comparing Eqs. (32) with (15), we obtain 

21 ~" /2 ~~ r", Hi"= 2i0f~= u < k). 
Hence 

Hi"= i Vrir" exp {i (rpi- tpn)} (rpi = arg ~i)· 

Replacing the functions t/J k ( r) by t/Jk ( r )explicpk l, 
we have 

(H*)hi =Hi:=- i 1/fir". 
Thus the operator g = H*f takes the form 

dh = (Eh -+r~z) C~t (33) 
h-1 

- i ~Vrrrici (k = I, 2, ... n). 
i=-1 

Th~ operator (33) is uniquely detern,ined by the 
roots of the function S 0 ( W ). In the simplest case 
of a single root, the system (33) reduces to one 
equation d 1 = ( E 1 - 7:ii 1 1 ) c 1, 

So (W') = W-Et- (i'2)ft 
W- 1:.1 + (i/2) 1'1 ' 

and the cross section becomes 

crR = 'i./, ·- --:-c---c-o----'----'---'--· 21I W -- £ 1 - (ii2) r 1 12 
es . w -1:.'1 + (il2) rl 

* See Ref. 19 for the reduction of finite matrices to 
triangular form. 
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( I3reit-Wigner ). The motion of the compound nucleus 

is given by 

ihdc1 jdt = (E1 - 1/zif1)c1, 

so that 

and r /h is the decay probability. For an arbitrary 
nuniber of levels, the decay probability becomes by 
Eq. (27) 

1 . I n H7-H7"1 
P = 7l ~1m w· 1- ~ w _ w· 

w~oo k=1 k 

(34) 

n n 
1 '\.~ .,• 1 ~ 

= ll L.J I w"- w" I= 71 L.J r". 
k=1 "·=1 

The total decay probability is equal to the sum of 
the probabilities for the individual levels, as one 
would expect. 

4, CONTINUOUS SPECTRUM OF THE COMPOUND 

NUCLEUS. TRIANGULAR MODEL 

Suppose that the number of complex levels 

IV~"~= E~nl + Yz i r~nl ( k = l, 2, ... , n) increases 

indefinitely, and that in the limit as n -> oo the 
numbers E kn) fill a certain interval a.::; E .::; b con­
tinuously. If the decay probability P of the com­
"pound nucleus is held fixed, then by Eq. (34) the 
I'(~) must tend to zero as n-> oo, Introducing the 
step-function 

. r<nl/E<nl E<nl P 11 (E) = h lc+l- h 

E<nl - a E<nl = b) 
1 - ' n+l 

and using Eqs. (34) and (30), we obtain 
n 

/1=1 

(1!) . IT 1 . " li-r-L h 
·.n [ Pn (E(n)) (E(n) - E1")) ] 

So (W) = h=l - l U"T- E(n) + _!___ rln) • 
"' ~" 2 h 

S. c E(n) - E(n) -> 0 and r(n) -> 0 as n-> oo·, we m e k+ 1 k k 
have 

1- i 
(E(n)) (E(11) _ E(n)) 

Pn h !.:+1 'h 

W- E(n) + _!___ r<n) 
" 2 h 

. Pn k h+l h { 
( E(11)) (E(n) - £<">)} 

~ exp - t W _ f:.(n) ' 

" 
from which it follows that as n-> oo the function 
S (n) ( W) tends to the limit 

0 

b 

.. r . \ p (E) dE} 
So (\\i) = exp l- t .l W-E . 

a 

The total decay probability is 

1 
P = h p(E)dE, 

and the probability for decay P ( E, E + dE) be­

longing to the interval (E, E +dE) is given by 

P (E, E +dE)= h-1p (E) dE. 

(35) 

(36) 

(37) 

If the compound nucleus has both a continuous 
and a discrete (complex) spectrum, the reduced 
scattering matrix has the form 

(38) 

= rr" W- Eh- (i/2) r" J_ . ~ p.(.E) dE} 
W - E1, + (i 2) l'h exp l 1 J W-E · 

h~ . a 

It is interesting that the density h-lp ( E ~ of decay 
probability can be found directly from the function 
5 0 ( W ). Taking the logarithm, we find 

11 W U:? 
In I S0 (W) I = In j "g W = w~ J 

b 

+I \ p (E) dE 
m.)W-£ (ImW=;i=O), 

a 

and the Stieltjes inversion formula 20 then gives 

h-1p (E)=- (lfhrr) In I S0 (E- iO) I· (39) 

Next we determine the operator H* in the case of a 
pure continuous spectrum, passing to the limit in 
the equations 

h-1 

din) _ (E(11) i 1,(11)) (11) . ~ (n) Vr<">r<n> 
h -- " - 2 k c" - t LJ ci i " . 

i=l 

We define the step-functions 

f (E) Cnl (E) r<"l/Ecnl E<nl n = C~t , P11 = h -h+1- h 

(E~n) ~ E < E~"+)1• E(n) E(n) b- a) .._ ~<+1- h = -n-

and obtain in the limit as n -> oo the following repre­
sentation for the operator g = fl* [, 

g (E) = Ef (E) (40) 

E 

- i ~ f (~) V p (~) p (E) d~ (a,< E--< b). 
a 
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The corresponding equation of motion* is 

ih of b;·'t) = Ef (E' t) (41) 

E 

- i ~ f (~, t) V p (~) p (E) d';. 
a 

In this case also the equation of motion is de­
termined uniquely by 5 0 (W). 

5. DECAY OF THE COMPOUND NUCLEUS IN THE 
CASE OF A CONTINUOUS SPECTRUM 

Iff( E, t) satisfies Eq. (41) and g ( E, t ) satis­
fies the ad joint equation 

ih :: = Eg(E, t) (42) 
b 

+ i ~ g (~. t) v p (~) p (E) d;, 
E 

the scalar product({, g) is constant in time. Ex­
plicitly, 

d (/, f!) = ( df g) + (t df!) 
.dt dt ' ' dt 

= k(H*f, g)-A (f, Hg) = 0. 

It follows that 

holds, where 

" If!~= lim \'1 f (E, t) 1 2dE, 
t-.. 00 j 

a 

b 

lgl~=lim \')g(E, t)j2 dE, 
t. 00 J 

a 

(43) 

fo=f(E;O), go=g(E,O). 

We shall show that the initial state [0 == f(E, 0) 
can decay incompletely**: 

b 

lim l'jf(E, t)/ 2dE>O. 
t ..... co ~ 

a 

This means that after all decaying waves are re­
moved there remains a certain population of nuclei 

* Similar equations can be derived (see Ref. 5) for 
any number of reaction channels. 

**We give later a quantitative estimate of this limit. 

which do not decay into the channel which is under 
consideration. Such a phenomenon obviously can­
not occur when there exist only complex levels. 

A solution of Eq. (42), or of 

.h dg H 
l dt= g (Hg = Eg (E) (44) 

b 

+ i \ g (~) v p (~) p (E) d;) 
E 

can he obtained from the formula 

g (E, t) = - 2~i ~ e-iAt!h (H- IJfigodl,, (45) 
y 

where y is a contour enclosing the spectrum a 
.::; E .::; b of H. It is easy to verify Eq. (45). Putt­
ing g 0 == e and using Eqs. (45) and (19), we have 

(g, e) = - 2~i ~ e- it.t/h ((H -IJ pe,e) dl, 
y 

= 2~ ~ e- i~-t;h (S~ (1, •) - I) dl .. 
y 

When the contour y is contracted onto the interval 
a .::; E .::; b, this becomes 

b 

(g, e)= 2~ ~e-iEtlh[S~(E + iO) (46) 
a 

- S~ (E- iO)J dE. 

Equation (25) when applied to the operator H he­
comes d / g /2/dt== h- 1 / ( g, e) /2 , and therefore 

00 

I g I~= I go 12 + { ~ 1 (g, e) l2dt (47) 
0 

00 b iEt 
= I go 1 2 + 47t~h ~I~ e- h rs; (E + iO) 

0 a 

The initial state [0 is given by Eq. (13), 

1 vr h2K 
fo = -- - (H*- WJ)- 1e K 2~ , 

and the scalar product is given by 
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h2 2 
= 2t-tKil-S0 (W)I . 

From Eqs. (47), (48) and (43) we derive the in­

e·quality 

If 1!, :> W ll- S0(W) ) 2/ .{(3 [hP 

b 

(49) 

+ ;" ~ \ S0 (E + iO)- S0 (E- iO) [2 dE), 
a 

where, by virtue of the Stieltjes inversion formula, 

I So (E + iO)- So (E - iO) I 
(50) 

= ertP (E) _ e- rtp (£). 

6. A DEGENERATE REAL LEVEL 

Returning to the case of a finite number of com­
plex levels, we may take in particular win) 

m(n) w<n) E II . r (n) d d . = w 2 = ... = n = 0 + 12 £ 0 , an enve 

( 
W- wl<nl )n 

S6n> (W) = 
W- w*<nl 

1 

The corresponding operator g = H* f becomes 

k-1 

(51) 

d<n> = (E + _!_ r<n> )\ c<nl- i ~ c(n>r<nl (52) 
k 0 2 0 k .LJ ') 0 ' 

i=l 

and the decay probability is P = ( n/h) r~nl. We 

fix P and let n .... ""· Since r~nl = hP In .... 0, we 

have W~nl .... E 0 • Equation (51) gives the following 

expression for the one-dimensional scattering 
matrix in the case of a degenerate real level 

S 0 (W) = exp {- ihPjW- E 0}. (53) 

We define step-functions fn ( x) ( 0 S x S hP) by 

{n (x) = c~O) ((k- l)hP/n ,S x S khP/n), (k 

= l, 2, ... , n ), and then pass to the limit in Eq. 
(52). The energy operator corresponding to a 
single infinitely degenerate real level E 0 is thus 

X 

H*f = Eof (x)- i ~ f (~) d~ (0 <;;: x <;;: hP), 
(54) 

0 

The equation of motion is 
X 

ih at b~' t) = E 0 f (x, t) - i ~ f (~, t) d';. (55) 

0 

Using Eq. (45), it is easy to obtain the solution 
{(x, t) of Eq. (55) corresponding to the initial con­
dition f(x, 0) = { 0 (x): 

f(x, t) =e-iE,t/h[fo(X) (56) 

X _ v ~ ~ fo (~) J1 (2 ~ (x- f,)!h) d~], 
o x-E, 

, where J 1 (A) is a Bessel function. 

7. EFFECT OF AN EXTERNAL FIELD ON THE 
COMPOUND NUCLEUS SCATTERING MATRIX 

In Sees. l-6 we obtained the general properties 
of the amplitude of the elastic scattering process 
a + X -> C ·-> X + a (a is the incident particle and X 
the target), assuming that the scattering is caused 
by the formation of the compound nucleus and by 
an impenetrable-sphere interaction. The effect of a 
spherically symmetrical potential can be included 
by the following simple argument. We suppose that 
for r > R the interaction between a and X is de-

c 
scribed by a potential V ( r ), while for r < R c the 
compound nucleus C is formed and can be described 
by a non-self-adjoint operator. Here r is the dis­
tance between a and X, and R is the radius of C. 

c 
The radial function U / r) ( r > R c) corresponding 

to angular momentum l satisfies the equation 

(57) 

- V(r)] Uz(r) = 0. 

Let E 1 ( r) be the solution of Eq. (57) satisfying 

the initial conditi~ns E 1(R ) = l, E'(R ) = iK. 
c l c 

Then 

Uz (r) = const {E; (r)- S)c> (W) Ez (r)}. (58) 

Since at r = R we have 
c 

Ez (r) = eii< (r- Rcl' Ez'(r)= [e'I< (r -Rc> ]'' 

the function s~c) ( w) may be regarded as the ampli­
tude of pure resonance scattering caused by the 
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formation of the compound nucleus C in the ab­
sence of a potential. On the other hand, as r -+ oo 

we have the asymptotic relation 

V t (r) ~ const {e- i (Kr- lrt/2) 
(59) 

- S1 (W) ei <Kr- trt/2lh 

where S 1 ( W) is the total amplitude, including the 
effects both of the compound nucleus and of the po­
tential. In the case of a short-range potential 
[ V(r) = 0 for r > R] the function U1h) can also 
be presented in the form 

v l (r) = const {vi-> (r) (60) 

- Sz(_W) vi+> (r)} (r >. R), 

where u;>(r) and ul<-> (r) are the solutions of 

Eq. (57) which are asymptotically of the forms 

ij~+)(r)"' ei(Kr-lTT/2), U~ -)(r) "'e·i(Kr-lTT/2). 

Comparing the values of U l ( R ) and dU l / drl r=R 

obtained from Eqs. (58) and (60), we find 

(C) *S(C) • S!(W) = azSz (W)- bzl(bz t (W)- az), 

with 

d£1 <-> dU~-> l at=--Vt -Ez-- , 
dr dr r= R 

• d (-)1 d£1 < > • U 1 bt=-Vz- -E,-- . 
dr dr r= R 

In this way the scattering amplitude with 8ll ex­
ternal potential appears as a fractional lineal' traas­
formation of the amplitude s~c) ( w ), and the coeffi­
cients a l' at• b 1, b'}' can he computed if the potential 

v ( r) is given. If the comround nucleus c has the 
complex energy-levels W~ 1 , then by Eq. (30) the 

amplitude sl (c) ( w ) is 

sf> (W) = rl W- E}t>- (i/2) r}l) . 
i=l W- £}1) + (i/2) f}1l 

Recently, various attempts have been made to 
unify the idea of a compound nucleus with the 
theory of nuclear shells2 1, so it is interesting to 
consider the case in which t:he compound nucleus C 
possesses in a certain energy interval a large · 
number of almost equally spaced levels W i = W 0 

+ jD + ir/2(j = l, 2, ... , n), where Dis the 

mean level spacing and r the mean width. In this 
case 

sf> = TI 1 - ( w- W0 - f r) j iD , 

i~I1-( W- Wo+ -fr)jjD 
If r /D << l, we have approximately 

sin 7t (w- W0 - .!._ r)jn s<c>_ 2 
1 

- sln7t(W- W0+f r)jn · 
In conclusion, I express my thanks to M. M. 

Al'perin for valuable discussions while this work 
was in progress. 
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