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New variational principles are formulated, characterized by a special variation subject to 
auxiliary constants, This makes possible the solution of boundary problems of hydrodynamics 
by direct methods. 

SEVERAL attempts have been made recently to 
formulate a general variational principle for 

hydrodynamics. 

Bateman 1 established a variatiqnal principle for 
isentropic gas flows. Lin and Ruhinov 2 general­
ized Bateman's principle to plane isoenergetic flow. 
In the work of lto3 , Bateman's principle was further 
generalized and applied to the construction of a 
quantum hydrodynamics and the study of the flow of 
liquid He II, which had been treated earlier by 
Landau 4 and London 5 • 

In these papers, the variational functional con­
tained several field parameters which were varied 
independently (density, velocity, pressure and 
other parameters in Refs. 1 and 3; density and 
stream function in Ref. 2). However, such a set of 
parameters is not minimal, and as we shall show 
later, in the general case of three-dimensional 
flow, two quantities determining the flow are suffi­
cient. 

I. THE PRINCIPLE OF LEAST STREAMING 

POTENTIAL6 

Let t/J, {} be parameters defining a particular 
stream line of the hydrodynamic field. t/J and ,'} 
remain constant along this line. The surfaces t/J 
= const and ,'}= const are surfaces of flow. At 
each point of the stream line t/J, ,'} we set up an 
orthogonal axis system xi so that one axis, say :X 1 , 

is along ( t/J, {} ). To each such axis system we 
associate an energy-momentum tensor T ik in the 
particular coordinate system determined by the 
axes. We denote the component T 11 of the energy­

momentum tensor with respect to such a system by 

T , so that T 11 = T . We define the field in ss ss 

terms of the quantities t/J (xi), tJ (xi), satisfying 

the relations: 
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With this choice of the defining quantities, the 

equation of continuity is satisfied identically both 
for actual as well as the varied field. For a plane 
flow, the defining quantity is t/J, where 

Relation (2) follows from (1) if we set t? = x 3 , which 

characterizes plane-parallel fields. The function 
t/1 in (2) is the stream function, and physically 
speaking determines the flux of matter through a 
stream tube. The difference t/J 1 - t/J 2 gives the 

flux of liquid through the region hounded by the 
stream lines t/J 1 and t/1 2 . The pair of functions 

( t/1, tJ) should he regarded as the generalized stream 
functions for three-dimensional flow. In this case 
the product ( t/1 1 - t/1 2 ) ( ,'} 1 - 1J 2 ) gives the value 

or' the flux of material through the region hounded 
by the flow surfaces t/J 1 , t/J 2 and ,'} 1, d 2 • 

Let a be the surface which hounds a certain 
closed volume Q of the field which contains no 
strong or weak discontinuities, and on which the 
distribution of t/1 and ,'} is known, i.e., we know the 
distribution of the matter flux through a. We shall 
also assume that the distribution of the total 
~echanical energy per unit mass of liquid, E(t/J, ,'} ), 
ts known on the surface of a. For the actual field 
along the stream line ( t/1, ) within n, we can 
write the equation of change of mechanical energy 
in the form: 
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~ aTsk y2 (3) --dS=-
a~ 2 r dP + ~ -p + R (p,·~,&) = E (•f,&), 

where R is the work of the frictional forces per 
unit mass of liquid. The quantity R is that part 
of the mechanical energy whicq is converted into 
heat. We demand that Eq. (3) be satisfied for the 
varied as well as the actual field. 

In addition, the law of conservation of energy 
(first law of thermodynamics) should be satisfied 
for both the real and the varied field: 

dQ = dU + Pd (1/p), (4) 

where Q is the heat and U the internal energy per 
unit mass of material, expressed in mechanical 
units. Under the conditions (3) and (4), the La­
grangian is L = T ss' and the integral 

f = ~ T 88dW (5) 
!2 

is an extremum for the actually established field. 
The integral (5) represents the work of the total 
flux of momentum of the directed motion of the gas 
molecules and is called the stream potential. The 
condition for an extremal of I gives equations of 
the form: 

The equations (6) give the components of the vor­
ticity which lie along the normals to the flow 
surfaces t/J = const and 11 = const. Without loss of 
generality, we shall give the proof of the principle 
of minimum streaming potential formulated above, 
for the case of plane flow of an· ideal gas which is 
barotropic with respect to a given particle. In this 
case 

L = Tss = P + pV2 ; R = 0; 

rV.~ = r.Ntfay; pVy =-a~; ax. 
We introduce the geometrical characteristic of the 
flux 

Then P, defined by the first law of thermodynamics, 
can he regarded as a function of p and t/J, and p as 
a function of € and t/J. We have 

I=~ [P (p, ·~) + ~]dcu. 
0 p 

In general we can find p from Eq. (3) as a function 
of 8 and tjJ. Regarding p = p ( e, tjJ) as the result 
of elimination of Eq. (3), we write the equation de­
termining t/J from the condition for minimum I: 

:x {[ ( ~: - :-~) ~~) + ~ J 2 ~~ } (7) 

+~{[(~-~)~_j___!_J 2~}- 0 ay ap p2 a{c<J ' P ay - · 

Differentiating (3) with respect to 8 for t/J = const, 
i.e., along a stream line: 

- IJ2p = (aPfap- 8fp2) apfa8. (8) 

Again differentiating (3) with respect to tjJ for El 
= const: 

(9) 

E'(w)=-~~. +o_i_l dP(p, y) +~~-
p , p2 aq; • aq; J r- ap ay 

Substituting (8) and (9) in (7) we get 

curl V = aP(p, y) - o_i__ \ aP(p, <J;) + p£' (w,)(.10) 
aq; • aq; J r 

Equation (10) gives the expression for the vorticity 
in a p_lane flow~ and is equivalent to the field 
equation ar 2k axk = 0. 

If the variation of t/J upon a certain surface a is 
arbitrary, th~n from the equation Of= 0 we get (lO) 

and the natural boundary condition V = V · n, where 
n is the normal to the surface a. 

For adiabatic flow, for which P = Ck(t/J)pk, Eq. 
(10) becomes 

curl V = - P ( dE - _k_ p(k- 1)/k .!!.£) (ll) 
d<Ji k -1 dy • 

If E and C do not depend on tjJ and /}, then L = L 
x(fl),where 

fj = ( D (y,&) )2 + ( D (<i;,&) )2 + ( D (y,&) )2 
D (X2Xa) D (xaxl) D (x1x2) 

is the geometrical characteristic of the flux for 
the case of three-dimensional flow. The equation 
o J L dw leads to the condition of irrotational flow, 
curl V = 0. 

2. RELATIVISTIC GENERALIZATION OF THE 

PRINCIPLE OF LEAST STREAMING POTENTIAL 

FOR A STATIONARY FIELD 
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In relativistic hydrodynamics 7 , the energy­
momentum tensor of an ideal gas is 

(12) 

where u i is the four-velocity of the flow of the gas. 
In this case 

L - T - '"' 2 (P ...L c2) V2 + P - SS- f' I P • (13) 

The equation of continuity has the form: 

div n~ B = O· C I ) 

(14) 

where n is the density of the gas in the reference 
frame in which the particular element of the gas is 
at rest. As before, we set 

V . .- 0 _ D (<)i, ~) . 
nux= n -c- p - D (y, z) ' (15) 

Vy 0 D(<)i.~) . 
nuy = n -c fJ = D(z, x) ' 

Vz D(y,~) 
nuz=n-~=D-( .). 

C X, V 

Under the conditions (15), the equation (14) is 
satisfied identically. The first law of thermody­
namics has the form 7 : 

Pd (ljn) + d (pc2jn) = 0. (16) 

For an ideal gas, the energy integral along a stream 
line takes the form: 

r; ar,,_ ds = 82 V2 + (32 ___!}_£___ = E (·) .&) . (17) 
J axk I 2 J. p + pC2 ' ' 

In relativistic hydrodynamics, the adiabatic flow 
of an ideal gas possesses vorticity, except in the 
case of one-dimensional flow. We shall assume 
that E = const, P = P(n), p = p(n), and limit our­
selves to the case of plane flow. Then 

L = [Pjc2 + p] Eln-2 + P. 

In classical hydrodynamics the condition for mini­
mum I would lead in this case to vanishing vorticity: 
curl V = 0. In relativistic hydrodynamics, because 
of the relativistic change of mass, the minimum I 
occurs for a vorticity different from zero. To 
simplify the computations, we shall actually carry 
out the calculation for the limiting case when V is 
close to c. Then p -> CJ. n k, where k is the rela­
tivistic component of an adiabat and is equal to 
4/3, P = l/3 CJ.k 2n k. Substituting these values in 
L, we get 

I = ~ ( akn"--28 + ; c2n") dxdy. (18) 

The Euler equation for (18) is: 

:.r{[aknh-2 (19) 

+ ( 7.k (k --2) n"-3f3 + k~c2 nh-1) .!!!!._] 2 !!i. l 
\ " dH ax j 

+ a~ {[e~.kn"-2 

+ (7.k (k -2) n"-3(.:.1 + kr/.C2 n"-l) !!!!_] '> dy 1.- 0 
3 dH ~ ay J - · 

We differentiate (17) with respect to e and de­
termine dn/dG: 

Substituting this value of dn/d8 in (19), we find 
after simple transformations, 

a.:kn"--l~curl V + k (k- 1) 7.nh'--3V•fV12 = 0, (20) 

from which, if we assume that curl V = 0, it follows 
that Vtf! · Vn = 0, hut this is possible only for the 
case of one-din1ensional flow. From (20) we obtain, 
in particular, the expression for the vorticity in the 
limiting case: 

curl V = (lj3nc) (Vvn). (21) 

3. NONSTATIONARY FIELD. THE PRINCIPLE OF 
LEAST ACTION 

We introduce three "stream functions" t(.!, ,J, a 
in four-dimensional space-time, and define the four­
velocity ui by the following formulas: 

(22) 

nu3 = D ('j!, S·, a)jD (x4x1x 2); 

nu2 = D ('f, 3-, cr)/D (x3X 4X 1); 

nu4 = D (•i, &, a)jD (x1x2x3 ). 

Under these conditions the continuity equation 

(23) 

is satisfied identically. As before, the geometrical 
characteristic of the flux is 
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8 = )' ( D (y, &, cr) )2, 
.....J D (xr,xrx 1) 

where the density n is related toe by the equation 

(24) 

In the four-dimensional space, the "stream world 
line" is defined by a triple of numbers (if;, 1J , a) 
constant along the whole "stream world line". The 
physical meaning of the stream function is that the 
product dlj;dJda determines the "flux" of liquid 
through the region bounded by the stream hyper­
surfaces if;, if;+ dlj;, (}, tJ + d jj; a, a+ da, or 
the flux through the region if;, if; + dlj;; ~~ , (} + d r'J 
of three-dimensional space during the tin,e interval 
dt. For fixed t, the line (if;, (} ) = const is the 

field line s tangent to the velocity vector V in 
three-dimensional space. 

To construct the Lagrangian L we construct at 
any given time, at each point of the actual stream 
line s, an orthogonal set of four axes x. so that 

' one of the real axes, say x 1, is always directed 
along the stream lines. To each such axis sys­
tem we associate an energy-momentum tensor T 

ik' 
defined in the system of coordinates determined by 
the particular axes. We denote the tensor compon­
ent T 11 for such an axis system by T s; , so that 

T = T--· Then L = T-;;· For an ideal gas, 
11 s s 

L = T-- = P + ( ~ + o,) u~ . ss c-- ~ (25) 

The integral of the energy along the stream line s 
has the form: 

1 ar-
' ~ ds = E (5, t). 
" axk 

(26) 

The relation (26) can be regarded as the general­
ized Hamilton- Jacobi equation for the field. In 
particular, for c-> oo, Eq. (26) goes over into the 
classical equation: 

\ -- ds +- + - = E (s, t). 
,, av - V2 ~ dP -
.l at 2 P 

(27) 

Again we write the first law of thermodynan,ics: 

Pd(ljn) + dU = TdH, (28) 

where U is the internal energy of the gas, and H is 
the entropy of the gas per molecule. If U = vpc 2 , 

where v = 1/ n is the volume per molecule, then as 
is shown in relativistic hydrodynamics 7 , H = const 
and (28) takes the form Pd( 1/n) + dU = 0. The 

variational principle for the hydrodynamic field 
when the conditions (24), (26) and (28) are satis­
fied consists in the statement that the integral 

~ ( at¥ a.& aa ) s = T-- ~ • .&, ::;, -a-· ---a, -a- dD. 
ss xi xi xi 

has a stationary value for the actual field. The 
quantities defining the field are if;, ,'}, and a, 
which are related by (24). 

For c-> oo, 

L = p + pV2 , r)V.y = D (·~, .&, a)/D (y, Z, t); 

rNy=D(·~,.&, a)/D(z, t, x); 

(29) 

pVz = D (•y, .&, a)jD (t, X, y); 

n = p = D (•f,.&, ::;)/D (x, y, z); 

dQ = TdH = dU + Pd(lfr;). 

t2 
In this case the integral S = f dt J ( P + p V2) d w 

t1 (<) 

takes on a stationary value for the actual field. 
The quantity S has, for a nonstationary field, the 
dimensions of action, so that the principle thus 
established for a non-stationary field in relativistic 
hydrodynamics may be regarded as a principle of 
least action. 

4. THE EXISTENCE OF ASTRONG MINIMUM FOR THE 
STREAMING POTENTIAL 

We shall prove the existence of a strong mini­
mum for the actual subsonic, adiabatic flow of a 
gas. To s~mplify the computations we shall, 
without loss of generality, limit ourselves to con­
sidering plane flow of the gas. Let if; he the solu­
tion, subject to the given boundary conditions, of 
the equation 

o ~ Ldxdy = o ~ F (8) dxdy = 0, (30) 

where L = F( 8) is the Lagrangian for the hydro­
dynamic field of an ideal gas, and e has the same 
meaning as earlier. 

The strean: function if; gives a strong minimun. 
for the functional/ = JLdw. In proving this, we 
shall make use of the theory of the Weierstrass 
function in the calculus of variations8 • For the 

construction of the Weierstrass function, it is suf­
ficient to satisfy the following two conditions: 

1) Every solution of (30) satisfies the self-ad­
joint Butler equation 

(31) 
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2) If tjJ is a solution of (31), then there exists 
at least one system cp of Lagrange surfaces which 
covers the extremal surface t/J, which depends on 
a single parameter ~' and for which the Jacobi 
condition 

P = a9;ax = a~;ax = p; Q = a9;ay = a~;ay = q. 

is satisfied on the extremal surface. 
Conditions 1) and 2) are sufficient for the con­

struction of a field consisting of Lagrange surfaces 
covering the surface-extremals t/J, which guaran­
tees the possibility of constructing the Weierstrass 
~unction of the variational problem. Conditions l) 
. and 2) are satisfied for the continuous hydrodynamic 
field of an ideal gas. In particular, we can take 
tjJ + ~for cp. The Figure shows the dependence of 
L = F ( 8) *. The branch 1 which is concave up­
wards corresponds to subsonic flow, the curve 2 
which is concave downwards, to supersonic flow 
of the gas. At the turning point 8 the critical 

cr 
condition is reached where the flow velocity is 
equal to the local sound velocity. 
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Corresponding to the Lagrangian L, we con­
struct the phase surface 

Z = L = F (H) = F (p2 + q2) = Z (p, q) (32) 

in the space p = atjJ I ax, q = atjJ I ay. Let the 

aggregate of three numbers p, 7j, L = z ( p, q) 
represent a point of phase surface. The equation of 
the tangent plane at the point ( p, q, C) of the 
surface Z has the form: 

* The curve was drawn for the initial conditions P 0 

'= 1 atm, p0 = 0.125 kgm-sec 2/m4 , k = c I c = 1.41, 
p v 

V 0 = a0 I 2, where a0 is the sound velocity. 

z =I+ (oLfop) (p- p) + (ol;aq) (q- ?J, <33) 

where Z, P, q are running coordinates in the plane. 
We denote by G ( p, q, p, q ) the difference in the 
values of Z on the surface (32) and on the tangent 
plane (33) to the point [, p, q, taken for the same 

point ( p, q ), and call it the deviation of the surface 
(32) from the plane (33) at that point. If this differ­
ence is positive, the deviation is positive, Thus 

G (p, q, p, q) = L (p, q) -L (p, q) (34) 

ar - ar -
--=(P-P) --=-(q-q) . a P aq 

Expression (34) coincides exactly with the Weier­

strass function 8 of the variational problem which 
provides a sufficient condition for the existence 
of a strong minimum. If G ;::_ 0 everywhere within 
the domain of definition of L, the solution of Eq. 
(30) guarantees a strong minimum for the functional 
I. From the Figure \'\e see that the phase surface 
Z = L ( p, q) for subsonic flo"" is a convex surface, 
and G ::::_ 0. For supersonic flow the phase surface 
has a saddle at every point. In this case the actual 
field tjJ 0 produces a minimax of I. If I ( t/J 0 ) = I 0 

then it is easily shown that tjJ 0 gives a strong mini­
mum, equal to I 0 , for the functional/* =~I 0 (I 0 I I 
+ I I I 0 ). Therefore, the actual field tjJ 0 , determined 

from the equation of= 0, satisfies the equation 
of* = o. In this way the minimax property of the 
streaming potential for supersonic flow is elimin­
ated, and one can apply the direct method of Ritz 
to it just as for the streaming potential of subsonic 
flow. For subsonic, adiabatic gas flows, the 
Weierstrass function is essentially positive and 
goes to zero if, and only if, p = p, q = 7j. From thi"' 
we get the uniqueness theorem: there cannot ex-
ist two solutions satisfying the same conditions for 
tjJ on the boundary surfaces of the region of the 
flow. 
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The dynamical magnetic moment of the deuteron is considered on the basis of the pseudo­
scalar meson theory with the pseudoscalar type of coupling , in the fifth order of perturbation 
theory. Exchange currents in the deuteron make an essential contribution to the dynamical 
magnetic moment, 

INTRODUCTION 

T HE well-known experimental result that the 
constant magnetic moment of the deuteron dif­

fers from the sum of the magnetic moments of the 
neutron and proton is commonly explained phenome­
nonologically by the existence of a tensor interac­
tion between nucleons. Because of this the ground 
state of the deuteron consists of an S-state with an 
admixture of aD-wave, which on one hand leads to 
the existence of the quadrupole moment of the deu­
teron, and on the other to the nonadditivity of the 

. . h d 1 magnehc moments m t e euteron . 
Although such an interpretation is not in quali­

tative contradiction with experiment, it still does 
not correspond exactly to the effect, since it does 
not take into account the existence of meson ex­
change currents in the deuteron, which are shown 
by experiment to have an essential effect on the 
electromagnetic properties of the deuteron, par­
ticularly on radiative effects in the neighborhood of 
the energy threshold for production of 11-mesons. 

Unfortunately there is at present no consistent 
phenomenological theory of exchange currents. Of 
the attempts in this direction most deserving of 
attention, mention must be made of the work of 
Sachs2 , and a paper of Villars 3 is devoted tothe 
meson-field treatment of this effect. 

An essential difficulty in the treatment of the 
magnetic moment of the deuteron on the basis of the 
meson theory of nuclear forces arises fromthe cir­
cumstance that within the framework of this theory 

the relativistic problem of two nucleons is at the 
present time unsolved, and the magnetic moments 
of the separate nucleons are ex"plained only 
.qualitatively by the theory with weak interaction 
between the nucleon and meson fields, so that any 
theoretical investigations in this subject are as 
yet only of a qualitative nature. Nevertheless, it 
can turn out that the perturbation theory to a cer­
tain extent gives a correct indication of the general 
tendencies in the behavior of the two-nucleon sys­
tem in interaction with high-energy y-ray quanta. 

The present paper is devoted to a consideration 
of the dynamical magnetic moment of the deuteron 
on the basis of the pseudoscalar meson theory with 
the pseudoscalar type of coupling. In interaction 
with the meson field of the vacuum the nucleons 
making up the deuteron can emit and then absorb 
virtual mesons, so that the real nucleon can be 
thought of as surrounded by a certain stationary 
cloud. If the charged meson clouds of the neutron 
and proton overlap,exchange meson currents arise, 
flowing from one nucleon to the other. The interac­
tion of the meson field surrounding the deuteron 
with the electromagnetic field can be inteq:reted as 
a supplementary direct electromagnetic interaction 
of the deuteron itself. 

In the expression obtained for this supplementary 
interaction one can single out the terms that repre­
sent the energy of a certain additional magnetic 
moment in the electromagnetic field. The size of 
this magnetic moment will depend on the frequency 
of the electromagnetic field. Thus the energy of 


