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A0 = 0 when there is no perturbation and A= 0 
where there is a perturbation of the boundary. 

If a small periodic perturbation is put on the 
boundary 

()z = a (f) eirf' 

then for the component oH, parallel to f, correct to 
a first order quantity for a (f), we have 

(3) 

oH 1. being reduced to zero. Using (2) and (3) we 
determine the free energy change (at the same time 
ll 0 = ll k' which appears to he a necessary condi­
tion of equilibrium). 

SH2 (tlj2 ) (4) 
'iJF= s/ ~I a (f) 12 -2- + f cos2<p , 

f 

where cp is the angle between f and H0 • 

In this way oF~ 0, which shows the stability of 
the boundary in relation to a smoothly changing 
form (it should be I grad z I « z/o, where o is the 
penetration depth). 

Equation (4) allows us to calculate the mean 
square of the fluctuation of the displacement of the 
boundary. I3y using the general theory of thermo­
dynamic fluctuation 4 we find 

I (f)\2 s~kT 
a = SH~ (tlf2 + 2/ cos2 <p) ' 

from which 

('iJz 2) = 2kT \ df . (5) 
~H~ ~ tlf2 + 2! cos2 <p 

The integral diverges logarithmically for large {, 
hut since our analysis is correct only insofar as 
f « l/o ( o is the penetration depth), we should 
stop the integration at {0 = 1/ A, A"' o. The cal­

culation gives 

(6) 

For mercury when T"' 1° K, with the exce~tion of 
the region near the lambda point, oz "'- 10- em. 

We note that a difference from the usual result 
for the fluctuation of the displacement of the 
boundary in the absence of magnetic field, where 

( o z) 2 "' f[" 2d f, is that the integral (5) corre-
sponds to lower limit. 

I gratefully acknowledge the help of E. l\1. Lif­
shitz in preparing this paper and in obtaining the 
results. 
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A s is known, the scattering amplitude for elastic 
scattering of particles without spin on particles 

with spin 1/2 in a state with a definite isotopic 
spin is of the form 

1 ~ + 1) f (6)= 2ik ..:::J l(l + 1)(pz - (1) 
/c=O 

00 

+ l (PI --1)] P 1 (cos 6) + ;; ~ (pz -pi) P~ (cos6), 
l=l 

where P 1 (cos e) and Pi (cos e) are the Legendre 

polynomials and the associated Legendre functions, 
k and e are wave number and scattering angle in the 
center-of-n,ass system, and n is a unit vector per­
pendicular to the plane of scattering. Here we 
introduce the notation: p~ = exp 2io ~ where a fare 

the scattering phases. With the plus sign we de­
note the magnitudes for the states in which the 
total momentum j is equal to l + 1/2, and with the 
minus sign, for the states in which j = l - l/2. The 
amplitude in Eq. (1) satisfies the relationship 

1 '2 Sp lmf (0) = (k/4~) cr, (2) 

where a is the total scattering cross section. For 
the scattering on the nonpolarized particles we 
have for the differential cross section and polariza­
tion 

cr' (6) = ~ Sp f+ (6) I (6) 
(3) 

f m 2 

= 4~2 tl to [(l + i)(pt -1) +I (pz-1) P1 (cos 6) j 
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00 00 

+ ~~~1 (p[ - P/ Pf(cos 6) \ 2 } = k~ ~0 AzPz (cos 6), 

cr' (0) P (6) = ~ Sp f+ (0) crn/ (6) (4) 

= 4: 2 2 {~0 [(l + 1)(p( -1} + l (p[ -1}] P 1(cos 6)} 

X \i ~1 (p[ - pj) P/ (cos 6)}, 

where the product of the complex numbers is taken 
in the sense of the scalar product 2Z 1 Z 2 = Zi Z 2 

+ Z*2Z 1. The coefficients A 1 are determined ex­

perimentally. From Eqs. (3) and (4) it is obvious 
that a'(()) [ l ±P (e)] and particularly a'(O ), 
a~ 7T) and a'( 7T I 2)[ l ± P ( 7T I 2)] are expr~ssed as 
the squares of the moduli of some linear combina­
tions of the quantities p~. If we add an arbitrary 
real number 'A under the square sign of the modulus 
in the expression for a'( 0 ), then, because of Eq. 
(2), we obtain 

4k2 {cr' (0) - )., 2 } + )., 2 
47t 

00 

=I~ [(l+1)(pf-1}+t<pz--1l]+)..l
2

• 

l=O 

(5) 

IUrthermore, if the number of phases different from 
zero is finite, and there are present both phases of 
the highest orbital momentum p taking part in the 

interaction, then for the last coefficient of the ex­
pansion of the differential cross section we get the 
following, as can be easily verified: 

I(P + 1) p; + pp; - p -1 \2 (6) 

- 2-j-2(4p-1)![(p-1)!]2p!(p-j-1)! 
- p [(::p -1) !]a (::p -j- 1}! A2P· 

If the last phases are both phases of the maximum 
total momentum j = p - l/2 then 

I p;_ 1 + P~ -11 2 (7) 

4(4p-3)![(p-1}!]1 
= 1 -j- (2p-::)! [(:Op-1)! J3 A2P-l• 

and the coefficient for p 2p (cos e) in a' is identi­

cally zero. In cases, when the polarization is not 
experimentally known, one can use the relation­
ships which follow directly from Eq. (3); for 
instance' .letting e = 7T 12. 

If in Eqs. (l)-(3), (5) and (6) we let p t = p 7then 

we get the relationship for the scattering of parti­
cles without spin. 

For the construction of mechanical apparatus 
which would allow the determination of phases a=} 
from the experimental data for angular distribution 
and polarization of the particles, we will consider 
the magnitudes p=} as vectors in a plane. Then it 
is obvious that the mentioned relationships de­
te'rmine the absolute magnitudes of some linear 
<nmbinations of these vectors. 

Scheme of the apparatus for 4 phases for spins ( 0, 1/2 ): 

-:'1 = p0 , B = p~ , C = 2p;, D = 2p:, E = 2pt +Pi, 
F=2p; + p0 , G=2pt -j-2p;, If= Po-l-Pi -j-2pt -j-2p;, 

L = 2k Vcr (v), M = V4k 2 {cr' (0)- 6cr f47t} + 36, 

N=2kVcr'(1t), P= 2V1 + 1"/9 A~. 
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Let us consider in more detail the case of find­
ing four phases for the scattering of particles with 
spins (0, l/2). From vectors Po· P""i., 2pi and 

2p;, let us construct a lever system, shown on the 
picture, and superimpose on it four connections 
which are determined by relationships (5) (for ,\ 
= 6 ), (7), and by relationships following from the 
expressions for a'(O) and a'(rr). On the picture 
the connections are shown by the dotted lines. 
Moreover we fix all 4 degrees of freedom of the 
system and can read off the angles 28 which the 
vectors p in point 0 make with the abscissa. Be­
cause of the arbitrariness of,\ in Eq. (5), the point 
H can be connected with two arbitrary points of the 
real axis, choosing them in such a way that the 
angle between these two connections is closest to 
a right angle--which increases the accuracy of the 
apparatub. For this purpose, because of Eq. (2), it 
is convenient to choose ,\ and A in such a way 

l 2 
that A 1 < 2k 2 a/ 4rr < .\2 , wherein, in the joining ofthe 

connection to the point x of the abscissa, ,\ 
= ( l + p) 2 - x or ,\ = p 2 + p - x [ depending on 
which of the Eqs. (6) or (7), is applicable ] . Be­
cause of Eq. (2), the left side of (5) is positive, 
and the experimental data, which do not satisfy 
this condition, are not compatible, since for them 
the relationship \ f( 0) \2 2: [ lm f( 0)] 2 is not satis­
fiel. As is known (Ref. l) the cross section (3) 
does not change if one substitutes for all phases 
the phase of the states of th~ same total momentum 
but of the opposite parity. This property of the 
cross section can be utilized to double the region 
of the angles which can be found by this apparatus 
without moving any of its parts through the point 
0; for this purpose it is sufficient to rename the 
vectors according to the scheme p0 <- P""i.· 2p! <- 2fl;. 
Note that only 4 relations [ (5), (6) or (7) and rela­
tions for a'( 0) and a'( 7T)] have a simple appear­
ance and at the same time do not include polariza­
tion data. Therefore, for finding a larger number 
of phases it is necessary either to consider polari­
zation data, or to realize more complicated rela­
tions of the type (3), or, finally, to extrapolate some 
phases based on the measurements for other ener­
gies. 

Mechanical analyzers, with an adequate amount 
of experimental data, permit one quickly to find 
phases and thus to solve the system of trigono­
metric equations which arise during a comparison 
of the expansion coefficients for the experimental 
angular distributions and polarization with the 
expressions of these coefficients by means of 
phases. In this type of apparatus, the connection 
between the phases and magnitudes, introduced 

from the experiment, is two-sided. Therefore, if 
the limits are known in which each of n independ­
ent experimental magnitudes can be found with 
the probability q, the apparatus allows us to find 
the limits in which the phases lie with the proba­
bility Q, where qn:::; Q.::; q (the right equality is 

realized for the complete correlation of errors of 
the experimental data, the left for the complete 
absence of the correlation). For this purpose the 
lengths of the connections must allow a free 
change within the errors of the corresponding 
magnitudes ( in the picture these limits are shown 
by the segments of the couplings). Varying the 
position of the apparatus within the limits allowed 
by the connections, one can find the limits for the 
phases and the sensitivity of the solution to a 
change of experimental data. 

Up to the present time the solution of the corre­
sponding system of equations (e.g., for the scat­
tering of 77- mesons by nucleons, or neutrons by u.­
particles) was either carried out numerically (Refs. 
2-5 ), or with the help of electrical analogues (Ref. 
6 ), or graphically (Refs. 7-9 ). The first two 
methods have the disadvantage that the connection 
between the experimental data and phases is one­
sided: only analytical expressions for the coeffi­
cients in the expansion in phases of the cross sec­
tions and polarization are known, and not vice 
versa. 1 herefore, the solution is obtained by a 
large number of successive approximations and 
does not indicate the shortcomings of the phases. 
True, the numerical calculation allows one to ob­
tain the "best" phases using the method of least 
square; however, the speed of numerical processing 
will doubtless be considerably greater if the phases 
are defined more accurately within the limits de­
termined by the apparatus. Graphical solution is 
possible only for the case when the number of ob­
tained phases does not exceed three; it also does 
not allow one to find the errors in the phases. 

The lever apparatus has already been described 
in the literature (Refs. 10 and ll) for determining 
three phases for the scattering of 77- mesons by 
nucleons, but in this apparatus only the relation (2) 
is utilized and the relation for a'( 0) ; also, in­
stead of utilizing the relations for a'( rr) or (6), 
there is used a very inconvenient condition for the 
equality of two angles whose apexes are at differ­
ent points for all situations of the apparatus. 

The author is obliged to Prof. B. M. Pontecorvo 
and also to L. I. Lapidus, R. M. Ryndin, S. M. 
Bilen'kii, A. I. Mukhin, S. N. Sokolov and G. N. 
Tentiukova for the valuable advice and help in 
the work. 
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HUNG 1 found that there is a change in the acti-
vation energy of the carrier current in gennanium 

in the region of helium temperatures and later this 
was verified by experiments2 ,3, But until the 

present time there has not appeared a satisfactory 
theoretical clarification. It seems to he proper at 
this time then to study the properties of germanium 
at very much lower temperatures. 

We obtained very low temperatures by the adia­
batic demagnetization of iron-ammonium alum. The 
apparatus allowed us to cool the germaium sample 
to 0.15 ° K. The temperature of the sample was 
controlled by a calibrated carbon thermometer, with 
an accuracy of 5 x 10-ao K. The electrical con­
ductor for measuring the resistance was passed into 
the dewar to the sample through an evacuated steel 
tube, and covered with polystyrene washers. The 
conductor is cooled to helium temperatures by 
means of a quartz rod and to very low temperatures 
by means of a block of alum. This made possible 
the attainment of very low temperatures in a matter 

of a few hours, so that we could carry on the ex­
periments at a temperature that remained relatively 
stable. 

The thermal and electrical contacts to the sample 
of germanium were made using springs tightly en­
veloping the sample, the ends of which were electro­
lytically covered with copper. The electrical re­
sistance of the sample was measured with an electro­
meter with a reversahle connection and with a cur-
rent sensitivity equal to 1 x 10" 14 A. 

~or measurements in the region of hydrogen and 
hehum temperatures, the apparatus was filled with 
atmospheric helium. For measurements at very 
low temperatures, several centimeters of gaseous 
helium were put in at room temperature by which 
the isothermal magnetization was hastened. The 
a.diahatic demagnetization depends on the adsorp­
tion of the gaseous helium over the surface of the 
cooled salt. 

Several samples of gennanium were studied hav­
ing a specific resistance of the orderof 1 ohm-em at 
room temperature. The samples were prepared in 
the Institute of the Metallurgical Academy of 
Sciences, USSR, and in the semiconductor section 

of Moscow State University. 
The temperature dependence of the specific re­

sistance of the sample is shown in Fig. l. The re­
sistance of the sample was measured at a gradient 
of 50-100 mv/cm. At this voltage the resistance 
for all practical purposes still does not depend on 
the field. The effect of geometry on the resistance 
was studied. To clarify the role of the contacts, 
the space between them was variedfor one of the 
samples from 15.8 to 8 mm at a constant cross 
section area of about 0.25 cm2. Within the limits 
of the accuracy of the experiment (around 20%) the 
calculated specific resistances were equal. There 
is the same degree of accuracy in the results for 
samples subjected to these different surface treat­
ments: l. polishing, 2. dipping in a boiling mixture 
of hydrochloric and nitric acids. The results did 
not change when the ends of the sample were 
coated with c:opper by means of electrolysis. 

We have shown two sets of curves on Fig. l. One 
of these curves corresponds to the resistance of the 
samples in the region of hydrogen and helium 
temperatures, the other, in the region of helium and 
very low temperatures. The results of the measure­
ments allow us to make some conclusions on the ex­
istence in the region of temperature from 0.15 to 
1 °K of an energy of activation smaller than in the 
region of temperature between 1.6 and 4.2° K. The 

small amount of activation energy of the current 
carrier in the region of helium and very low 


