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distribution of y-rays must have the form A + B 
cos 2e, where 

b [. f fcos 2 .&F(c:'"')dc:'"' J· 
A = a + 2 1 - J dc:Y J V 2 , 

0 a: c:, -1 

The same conclusion was reached earlier in He f. 2. 
Using this result and Hosenfeld's 3 suggestion re­
garding the existence of an "isotropic" angle e ~ 
for charged mesons we can also conclude that the 
gamma flux at angle e*N is independent of the ratio 
of a and b in the angular distribution of rr 0 -mesons. 

The above-mentioned properties of the gamma 
spectrum and flux for the "isotropic" angle are 
retained in the more general case when the angular 
and energy distributions of the rrO-mesons are of 

the form a ( E 77 ) + b ( E 77 ) cos 2e. It should be noted 
that in this instance when the derivative of the 
measured gamma spectrum is multiplied by the 
gan1ma-ray energy we obtain the function a ( E77 ) 

+ l/3 b"k). 
I take this opportunity to acknowledge n;y in­

debtedness to B. M. Pontecorvo for a discussion 
of the above results. 
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N aflongago, Beck's paper 1 appeared, in which 
the author, using London's equations for the mag­

netic field in a superconductor, found an instability 
in the boundary between the n- and s- phases as re­
gards a periodic (along the surface) perturbation of 

the shape of the boundary. It is immediately clear 
from Eqs. (25) and (34) of Hef. 1 that the instability 
found by the author, at least as regards a perturba­
tion with a period much greater than the penetration 
depth of the magnetic field in the superconductor, is 
explained by the well-known fact that London's 
equations lead to a negative surface energy on the 
boundary 2 • Since a negative surface tension contra­
dicts experimental results for thin films, the analy­
sis of the problem of stability should be based, not 
on London's equations, but on the theoretical cal­
culations of Landau and Ginzburg3 , which give a 
positive value to the surface energy. In Landau 
and Ginzburg's theory, the problem of stability be­
comes the problem of a unique solution at infinity 
under corresponding boundary conditions. A strict 
analysis such as this can scarcely be performed by 
means of the non-linear equations of the theory. The 
only complete solution is for a perturbation with a 
period much greater than the penetration depth. In 
this case it can be made equal to zero, so that B = 0 
in the superconducting phase. Also, in agreement 
with the theory of Landau and Ginzburg, we attri­
bute a positive energy to the boundary between the 
n- and s-phases, which we write in the usual form, 
( ll z /8 rr) ~. where H k is the critical field and ~ 
is a constant with the dimensions of length. The 
free energy change taking place with a variation in 
the shape of the boundary is written (for this case) 

H~ Hr, 1 \ 2 \1 ( 1) 
aF = -· w + tl-8 · as- if" a .\ H d . 

87:' n 7: r: V 
n 

The equilibrium of a plane boundary is studied in 
relation to an arbitrary (but not specifically ori­
ented, as in Ref. 1) periodic perturbation. The 
stability of the boundary of arbitrary form is ana­
lyzed in the same way because any small part of the 
boundary can be thought of as a plane. The in­
tegral on the right side of Eq. (1) is easily trans­
posed so that to calculate oF, correct to a second 
degree term over a small variation in the boundary 
oz, it is sufficient to know the magnetic field 
variation o H with an accuracy to a term of the first 
order of oz. By means of a simple transformation 
we can show that 

(2) 

where A0 is the vector potential of the unperturbed 
constant field H0 ; the integral on the right-hand 
side of Eq. (2) is taken over the surface of the per­
turbed boundary. In the derivation of Eq. (2) the 
vector potentials A and A 0 are so normalized that 
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A0 = 0 when there is no perturbation and A= 0 
where there is a perturbation of the boundary. 

If a small periodic perturbation is put on the 
boundary 

()z = a (f) eirf' 

then for the component oH, parallel to f, correct to 
a first order quantity for a (f), we have 

(3) 

oH 1. being reduced to zero. Using (2) and (3) we 
determine the free energy change (at the same time 
ll 0 = ll k' which appears to he a necessary condi­
tion of equilibrium). 

SH2 (tlj2 ) (4) 
'iJF= s/ ~I a (f) 12 -2- + f cos2<p , 

f 

where cp is the angle between f and H0 • 

In this way oF~ 0, which shows the stability of 
the boundary in relation to a smoothly changing 
form (it should be I grad z I « z/o, where o is the 
penetration depth). 

Equation (4) allows us to calculate the mean 
square of the fluctuation of the displacement of the 
boundary. I3y using the general theory of thermo­
dynamic fluctuation 4 we find 

I (f)\2 s~kT 
a = SH~ (tlf2 + 2/ cos2 <p) ' 

from which 

('iJz 2) = 2kT \ df . (5) 
~H~ ~ tlf2 + 2! cos2 <p 

The integral diverges logarithmically for large {, 
hut since our analysis is correct only insofar as 
f « l/o ( o is the penetration depth), we should 
stop the integration at {0 = 1/ A, A"' o. The cal­

culation gives 

(6) 

For mercury when T"' 1° K, with the exce~tion of 
the region near the lambda point, oz "'- 10- em. 

We note that a difference from the usual result 
for the fluctuation of the displacement of the 
boundary in the absence of magnetic field, where 

( o z) 2 "' f[" 2d f, is that the integral (5) corre-
sponds to lower limit. 

I gratefully acknowledge the help of E. l\1. Lif­
shitz in preparing this paper and in obtaining the 
results. 
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A s is known, the scattering amplitude for elastic 
scattering of particles without spin on particles 

with spin 1/2 in a state with a definite isotopic 
spin is of the form 

1 ~ + 1) f (6)= 2ik ..:::J l(l + 1)(pz - (1) 
/c=O 

00 

+ l (PI --1)] P 1 (cos 6) + ;; ~ (pz -pi) P~ (cos6), 
l=l 

where P 1 (cos e) and Pi (cos e) are the Legendre 

polynomials and the associated Legendre functions, 
k and e are wave number and scattering angle in the 
center-of-n,ass system, and n is a unit vector per­
pendicular to the plane of scattering. Here we 
introduce the notation: p~ = exp 2io ~ where a fare 

the scattering phases. With the plus sign we de­
note the magnitudes for the states in which the 
total momentum j is equal to l + 1/2, and with the 
minus sign, for the states in which j = l - l/2. The 
amplitude in Eq. (1) satisfies the relationship 

1 '2 Sp lmf (0) = (k/4~) cr, (2) 

where a is the total scattering cross section. For 
the scattering on the nonpolarized particles we 
have for the differential cross section and polariza­
tion 

cr' (6) = ~ Sp f+ (6) I (6) 
(3) 

f m 2 

= 4~2 tl to [(l + i)(pt -1) +I (pz-1) P1 (cos 6) j 


