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antinucleons with nuclei. However, in the colli­
sions of antinucleons with nucleons bound to the 
nucleus, there is the possibliity of other processes 
("extraordinary" annihilation) in which the number 
of rr-mesons emitted is less than or equal to one. 

Annihilation with the emission of a single 77-

meson can take place in the collisions of an anti­
nucleon with a nucleus of atomic mass A :?. 2. An­
nihilation which is not accompanied by emission of 
even a single meson is possible only in the colli­
sions of an antinucleon with a nucleus of atomic 
mass A > 3, It is not difficult to see that the 
processes of one-meson and zero-meson annihila­
tion of antinucleons occur in processes inverse to 
those in which antinucleons are created in the col­
lisions of rr-mesons and.nucleons with nucleons. 

Keeping in mind the possibility of setting up ex­
periments, we have considered below several proces­
ses of "extraordinary" annihilation of antinucleons 
which are characterized by the fact that the number 
of particles in the final state is equal to 2. 

In the case of collisions with deuterons, the fol­
lowing reactions are possible: 

a) p + d ~ 1t0 + n; a') n + d ~nO+ p; 

b) i + d ~ 7t- + p; b ') n + 4 ~orr++ n. 

According to the principle of charge symmetry, the 
cross sections of reactions of type a) are equal; 
the cross sections of reactions of type b) are also 

equal. . 
It is not difficult to show that charge mdepend­

ence requires that the cross sections of type b) be 
twice those of reactions of type a). From the ex­
perimental point of view, the reactions b) are es­
pecially interesting. Here four charged particles 
take part. The ratio of the cross sections of the 
direct and inverse reactions of b), for the conditions 
of identical energy in the center-of-mass system, 
is equal to 

cr(p +d ..... 7t- + p (2S1t + 1) (2SP + 1) k2 _ k2 

cr (1t- + p _,. p + d) = (2SP + 1) (2Sd + 1) if- 3q2 ' 

where Srv, S d are the magnitudes of the spins of 
p 

the antiproton, the deuteron, etc.; k and q are the 
momenta of the rr-mesons and the antiprotons in the 
center-of-mass system. Investigation of the direct 
and reverse r-eactions of b) give the possibility of 
verifying the correctness of the assumption that 
the spin of a negative particle with proton mass is 
equal to one-half. For example, the cross section 
of the reaction b) of the annihilation into a deuteron 
of an antiproton with kinetic energy 500 mev ought 
to be 1.6 times greater than the cross section of the 

reaction of the creation of a deuteron and an anti­
proton in the collision with a proton of a rr-meson 
with energy 4.6 bev. 

Let us consider processes of single meson an­
nihilation of an antinucleon in a nucleus with A 
= 3: 

c) p + Hea ~ d + 1to; c ') n + H3 ~ d + 1to; 

d) PH~H3 ~d+1t-; d') n+He3 ~d+7t+. 

The ratio of the cross section of reactions of types 
c) and d), according to charge independence, is 
equal to 2. From the experimental viewpoint, the 
reverse reactions c ') and d ') present interest. 

Zero-meson annihilation of an antinucleon is il­
lustrated by the following reactions: 

e) p + H8 ~ n + n; e ') n-+ He3 ~ p + p; 

f) p + He3 ~ n + p; f ') n + H3 ~ p + n. 

Here the reverse reaction to e ')--the formation of 

He 3 in the collision of two protons-is of experi­
mental interest. 

Experimental investigation of the above-mentioned 
processes is of fundamental significance. It is 
reasonable to expect that the processes of single­
meson and zero-meson annihilation are signifi-
cantly less probable than the process of multiple 
meson annihilation. This follows, for example, 
from Fermi's statistical theory of multiple pro­
duction of mesons. 

It should be emphasized that the probability of 
processes of "extraordinary" annihilation of anti­
nucleons could be increased if one could have es­
pecially strong nucleon-antinucleon interactions of 
the type assumed in the Fermi-Yang model. 

The author thanks L. I. Lapidus for his discus­
sions on the subject. 

1 Chamberlain, Segre, Wiegand and Ypsilantis, Phys. 
Rev. 100, 947 (1955). 
Translated by R. T. Beyer. 
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I N the consideration _of the scattering of ~ elec­
tron in an external f1eld, Bloch and Nords1eck 1 

assumed a method of approximate solution of the 
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Dirac equation, which is valid in the region of low 
frequencies. The zeroth approximation of this 
method is equivalent to substitution in the initial 
equations of the c-numbers for the Dirac matrices. In 
the determination of the Green's function, there is 
definite methodological interest in making the same 
replacement of the matrices y oc by the e-n umbers 
u"' ( o. = 0, l, 2, 3) in the corresponding equations. 
After such a substitution the resultant equations 
are solved exactly. 

The equation for the electronic Green's func-
tion 2 has the form 

ia --m- t 4rr eu" A (x) { " a .r-
ox" ~ 

- V 4rr ieu" ~ D"" (~. xiA) M: (~) d~} G (x, y I A) 

=-8(x-y), 

(l) 

where D ocf3 (e. X I A) is the photon Green's func­

tion. In the given model, as can be easily shown, 
vacuum polarization is absent; consequently, we 
have, in momentum representation, 

M-+ oo, goo= 1, gii =- 1. 

Equation (l) takes the form 

{(uk)- m- ~(up) A" (p) M"'a(p) dp (2) 

,r- e \' " ,r- e 
- t 4rr (2rr) 2 ~ u Aa: (p) dp - i t 4rr (2rr)2 

X~ u"Da:p, (p) Mr;a(p) dp} G (k I A)= -1, 

in momentumrepresentation, where (uk) = u"'koc; m 
--> m - if, Here we have used the invariance of the 
Green's function under the transformation 

G(x, y I A)=G(y-x I TxA); 

D (~. X I A)= D (~-X I T XA), 

where T is the displacement operator T A ( c;) 
X X 

=A(c;-+x). 
For the solution of Eq. (2) we make use of the 

method of proper time of F ock 3: 

CXI 

G (k I A) = i ~ <D (v, k I A) dv. 

0 

a 
- i av CD(v, k I A) =HCD(v, k 1 A); <D(O, k 1 A)= 1, 

where H is an operator which appears on the left 
side of Eq. (2). Here the relation 

M"a(p) <D (~. k I A). 

= - V 4rr ~ ei(up)v- 1 <D (v, k I A) 
(2rr)2 (up) 

holds. As a result, we can write 
co 

(j (k I A) = i ~ dve-i(m-(uk)]vtf(v) 

0 

X exp {v !•rr _e_ \ e-i(up)v - 1 u" Ao:(P) dp} ; 
(21t') 2 J (up) 

- e2 "' r>f \ e-i(up)v_1 
f(v)- 47t'3 u u j dv J (up} Da:r>(p)dp. 

0 

Integrating over p-space, we get 

i e2 M 
f(v) =- 2 e2Mv +-;;In-:;: 

co 
_ e2 \' exp {-iV~v} 2 d 

7t' t ()..2 + p2)'1• p p. 

For A = 0 we have 

i • e2 M e2 , 
j (v) = - 2 e"Mv +-; ln m' + 1t In m v. 

(3) 

(4) 

(5) 

The first two terms in Eqs. (4) and (5) are removed 
by renormalization of the electron mass and by the 
Z-factor of the electronic Green's function. 

On the basis of Eq. (5), we have 

G' (k I A) = z-1G (k I A), Z = (Mfmfl'<, 

where m' is the experimental mass of the electron, 
G ' ( k I A) is the renormalized Green's function. 
Finally, renormalization of the electronic Green's 
function for A = 0 takes the form 

CXI 

G' (k I A)== i ~ dve-i(m'-(uk))v (m'vt~"" (6) 

0 

{ e ~ e-i(up)v 1 } 
X exp V4rr-- - u"'A" (p)dp . 

, (2rr)2 (up) 

In particular, 

G' (k I 0) = 1 11 - ~ ~-e'frr: · (7) 
m'-lkl m' ' 

We then have for the function <I>( v, k I A) the equa- here, we have set uoc = koc /I k I· A formula similar 
tion to Eq. (7) has been obtained by Abrikosov4 • 
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Applying the Green's function (6), it is not diffi­
cult to obtain the following formula for the effective 
cross section of the scattering of an electron in an 
external field with radiation of n photons having 
energy in the interval from E 1 to E 2 , independent 
of the number of longitudinal photons radiated in 
this case: 

In conclusion, I express my deep gratitude to 
Acad. N. N. Bogoliubov for his direction of the 
work. 

1 F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1936). 
2 J. Schwinger, Proc. Nat. Acad. Sci. 37, 452 (1951). 
3 V. A. Fok, Z. Phys. Sowjetunion 12, 404 (1937). 

4 A. A. Abrikosov, Dissertation, Institute for Physi­
calProblems,Acaderny of Sciences, USSR, 1955. 

Translated by R. T. Beyer 
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THE proposed idea consists in attributing to the 
nucleon an interpal structure very suggestive of 

the structure of the hydrogen atom (see Ref. l ). 
We shall consider the nucleon as a system cf two 
hypothetical particles ( "m-particles" ), which inter­
act by means of a certain strong field X. The es­
sential difference of this model from the hydrogen 
atom is that the strong field is not Coulombic and 
is different from potentials considered earlier (the 
Yukawa potential and others). 

In Ref. 2, the author has shown that, within the 
framework of the basic principles of the existing 
theory of elementary particles, a consideration of 
the relativistic field is possible, which gives (for a 
point source) a potential which falls off very 
rapidly with distance. The potential can be repre­
sented by the approximate formula 

V (r) = - (rra I Y2r) e-r'f2i.', (l) 

where r is the distance from the source, a is the 
x-charge of the source, >. is some positive constant­
the "elementary length" (we limit ourselves to the 

case "== 0 2 , which presents the greatest interest). 
The field which leads in the final count to the po­
tential (l) is defined by the equation 

(0 - :A.-4 (x~" - x~) (x~"- x~)) x =- 4rra8 (x- x0). ( 2) 

It is important, from the physical point of view, to 
emphasize that l) for the x-field, the case of a free 
field makes no sense, i.e., a field without sources 
does not exist; further, assuming formally that a 
== 0, we get on the left side of Eq. (2) an isolated 
P.oint x 0 which corresponds to the position of a 
'virtual" source; 2) the quantization of Eq. (2) 

cannot give a state with definite 4-momentum, only 
states with definite 4-angular momentum. In par­
ticular, there does not exist for Eq. (2) a state with 
definite energy, i.e., there is no stationary state. 
Therefore, the particles of the x-field, if they ex­
ist in nature, cannot be observed by experiments 
with counters, Wilson chambers, etc. One can show 
that, from the experimental viewpoint, these would 
not be particles, and in this sense, we have come 
across a possible limit of the applicability of the 
corpuscular-wave dynamics. 

The potential (l) can be understood in dual fash­
ion (limiting ourselves to fields of the Bose type 
with spin not greater than l ): either as the fourth 
component of a 4-vector, analogous to the Coulomb 
potential, or as a scalar or pseudoscalar. The first 
possibility presents the greater interest, since in 
this case all the constants of the problem can be 
determined up to the determination of the mass 
spectrum (but not by the mass spectrum). 

Neglecting the spin of the particles which II\ake 
up the nucleon by our hypothesis in first approxima­
tion, we obtain the wave equation (after separating 
out the motion of the center-of-mass): 

{-(v-i"lt :t +aV/+c2 (-itV- ~ v/ (3) 

+ c2( me + ~ Q> Y} ljJ = 0, 

where ( V, V) are the vector, <I> the scalar, potential, 
a, y are corresponding binding constants, m is the 
reduced mass for the v of internal motion. Let us 
assume that in our system of coordinates V == 0, V 
is given by Eq. (l) and that <I> is the potential of 
the scalar meson field. For simplicity we assume 
that both particles of our system have the samemass 
m and possess unit x-charges and meson charges 
y, in which y = g/2 ( g is the meson charge of the 
nucleon as a whole)*. In view of this, 


